

10

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

PERFORMANCE, SCALABILITY, AND FLEXIBILITY: A
COMPARATIVE ANALYSIS OF WINDOWS, LINUX, AND

SOLARIS
Alishba Atta
Department of Computer Science, University of Southern Punjab Multan
alishbaatta17@gmail.com
Kinzul Eman
Department of Computer Science, University of Southern Punjab Multan
kinzuleman82@gmail.com
Boo ali Hassan
Department of Computer Science, University of Southern Punjab Multan
booalihassan5@gmail.com
*Muhammad Azam,
Department of Computer Science, University of Southern Punjab Multan
Corresponding Author*:muhammadazam.lashari@gmail.com
Muhammad Zeeshan Haider Ali
Department of Computer Science, University of Southern Punjab Multan
ali.zeeshan04@gmail.com

RECEIVED
04 January 2025

ACCEPTED
17 February 2025

PUBLISHED
26 February 2025

ABSTRACTAbstractAbstct

All current computing systems are based on the functioning of operating systems (OS), which perform the functions
of hardware abstraction, resource allocation, and process control. These various platforms of OS offer several
options, and one is to compare the best and the most suitable to the particular architecture and use cases which
demand a comparative analysis that delves into the mechanism and efficiency of operation. This paper gives a
comparative review of three popular operating systems, Windows, Linux, and Solaris, in terms of important
aspects like the process management system, file systems, threading system, memory management, virtual memory
operations (page hits and misses), and kernel mode operations. Examine several peer-reviewed research articles
and technical reports critically. This piece of work isolates the architectural distinctions, operational plans, and
system-level innovations that mark these OSs. Windows focuses on ease of use and kernel modification; Linux
focuses on modularity and open-source flexibility; while Solaris focuses on enterprise network scalability and high
throughput. The results add a few helpful computer science contributions to the discussion of the design choices in
operating systems and their results on the performance, stability, and resource utilization in various computing
situations.
Keywords: Operating Systems, Windows, Linux, Solaris, Process Management, File Systems, Threading
Models, Memory Management, Virtual Memory, Kernel Architecture, Comparative Analysis.

mailto:alishbaatta17@gmail.com
mailto:kinzuleman82@gmail.com
mailto:booalihassan5@gmail.com
mailto:muhammadazam.lashari@gmail.com
mailto:ali.zeeshan04@gmail.com

11

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

Introduction

Operating system is described as the
underlying software layer which enables
interaction among hard ware resources and
software applications, and has taken a form
which permits it to control important
functions of a system including memory
handling, process creation, file operations and
device management. Its aim is to guarantee
effectiveness in use of resources and stability,
fairness, and security when carrying out
various activities. Nonetheless, designing and
implementing operating systems have long
remained fraught with such challenges,
among others, to have them efficiently
multitask, protect their memory, coordinate
I/O choices and optimize their performance on
various hardware platforms (Papadimitriou &
Moussiades, 2018).
Varying operating systems have made
different approaches and architectural plans
and mechanisms at the system level to tackle
the challenges. An example is the transaction of
Windows, which has a hybrid architecture of a
kernel, a layered structure, subsystem
isolation, fine-grained access control, and
modular functionality, although this system
can make complexities of low- level operations
and create performance obstructions under
some work loads (Vogels, 1999). However,
Linux instead uses monolithic (but not
modular) kernel architecture, and has been
made flexible, able to be developed
community-wide, and responsive to real-time
tasks, particularly with regard to I/O-latency
and interactivity tasks (Bovet & Cesati, 2000;
Oliveira et al., 2022). Solaris, which has been
designed to focus more on enterprise level
systems, proposes project-based resource
administration, threading at the kernel level
and bundling in of the ZFS that all together
facilitate the aspect of high reliability,
scalability and efficient data management

(Levy & Silberschatz, 1989; McDougall &
Mauro, 2007).
The influence of these three systems
demonstrates opposite points of view about OS
development. whereas Windows focuses on
user-friendliness, compatibility with old
programs, Linus concentrates on
transparency, user-configuration and speed.
Solaris, in its turn, offers an enterprise type of
framework that supports strong scheduling
policies and enables advanced storage systems.
As computing needs continue to change
particularly in the fields of virtualization,
cloud infrastructure and real-time analysis the
background nature of the operating system
becomes all the more crucial and the adequacy
of design decisions will further determine the
performance and stability of the system on a
whole (Papadimitriou & Moussiades, 2018; Xu
& Wang, 2024).
Kernel Mode
The kernel mode in Windows is a privileged
level of execution on which core system
services, device drivers, and the executive
portion of the operating system execute,
providing unrestricted access to system
memory and hardware. Windows architecture
operates on the hybrid kernel model:
separating subsystems into a microkernel-like
architecture, and combining it with the
monolithic properties in terms of performance
(Papadimitriou & Moussiades, 2018). The
Kernel, Executive, Hardware Abstraction
Layer (HAL), and Device Drivers are core
components and they run in kernel mode, and
inter-module communication is done by using
dedicated interfaces. Although this structure
is more stable and modular, the transition
between user and kernel mode can create
overhead where the system call or I/O is
frequent (Vogels, 1999). Kernel-mode activities
are secured using security mechanisms such as

12

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

kernel patch protection and signed drivers,
although any vulnerability in a privileged

component can enable subversion of the whole
system.

A monolithic kernel approach has been
adopted in Linux, which implements most of
the system services, such as device drivers, file
systems, memory handling, in kernel mode
and applications in user space communicate
with these services through system calls.
Kernel modules do (however) run in the
privileged mode of the core kernel, so that
both benefit and disadvantage remains as
compared to the core kernel (Bovet & Cesati,
2000). High-performance interfaces of the
system calls, like sysenter/sysexit or int 0x80,
are often used to optimize the context
switches betweenuser and kernel mode,
preemption makes it possible to interrupt
lower-priority tasks by higher- priority ones
even within the kernel (Oliveira et al., 2022).
Although Linux was able to offer flexibility
due to modularity of its extensions and allow
fast development of the kernel, high
separation of kernel and user code is required
to ensure reliability and security of the system.
Solaris has a monolithic modular kernel, with
major services executing in the kernel mode
but designed to enable them to be fine-grained
controlled, configuration at run-time and fault
containment. The kernel offers several
scheduling classes, policies of managing
resources, as well as a track of contract based
services, and these policies are carried on in
the kernel mode so that the system can be
responsive and usage restrictions can be
imposed (McDougall & Mauro, 2007). Solaris
also enforces kernel preemption, meaning the
lower-priority kernel threads can be
preempted by the higher-priority ones thereby
enhancing the real-time performance and
elasticity to concurrent workloads
(Papadimitriou & Moussiades, 2018). Kernel
mode components will communicate using
well organized interfaces, and the system calls
are serviced using an efficient trap table

mechanism which keeps an effective switch
between user and kernel contexts. The
reliability and modularity of operations on
kernel mode is high in Solaris, but the
complexity of interactions with these
capabilities might make them more
problematic to learn by developers and system
administrators.
Process Management:
Process management has been adopted on a
client-server model in Windows, whose
implementation is based on a hybrid kernel
form where subsystems of the user modes
interrelate with the components of the kernel
mode in an object-based abstraction. Every
process is described by the executive object
which includes process identifier, security
structure, handle table and pointers to the
thread structures. The creation of processes is
associated with both Windows Subsystem and
Windows Executive, and the child processes
received many traits of parent processes,
which are available in an organized
duplication scheme (Papadimitriou &
Moussiades, 2018). The task scheduling in
Windows is priority-based and preemptive
and is managed by a multilevel feedback queue;
nevertheless, the system is highly
configurable, having its ability to change the
priorities between the threads according to
the I/O wait times and execution behavior.
That enables keeping responsiveness
throughout the interactive tasks, but kernel
switches and inter-process communication can
have an overhead during the heavy workloads
(Vogels, 1999; Xu & Wang, 2024).
On the contrary, Linux handles such processes
using a monolithic kernel which is very simple
but highly effective in performance as far as
scheduling and resource allocation is
concerned. All the processes in Linux are

13

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

monitored via task_struct structures which
contain metadata
 r
elated to the process such as process identifiers,
CPU affinity, scheduling policy and memory
mappings (Bovet & Cesati, 2000). Linux, the
process management strategy addresses
fairness and responsiveness with the
Completely Fair Scheduler (CFS) where CPU
time is apportioned fairly in accordance with
the virtual run-time. Scheduling policies
available in Linux are diverse, e.g.
SCHED_FIFO,
SCHED_RR, SCHED_OTHER, and can be
used to place real-time, time-sharing and the
batch processes simultaneously on the system
without conflicts in an efficient way. Copy-on-
write techniques streamline forking
mechanisms and the context switches of
processes have been strongly reduced by the
implementation of lightweight threads and
shared memory models (Oliveira et al., 2022).
The kernel supports multitasking well,
however, in response to many active processes
on a relatively small hardware, higher latency
can be created.
Solaris has been designed to manage the
process in a highly-scaled and resource-
controlled fashion, as such it enhances large-
scale and high-availability distribution. All of
processes are incapsulated by the process
structure, project ID, and the contract ID and
Solaris introduce resource pools and projects
to distribute and manage the system resources
according to administrative policies
(McDougall & Mauro, 2007). This system
allows many scheduling classes as TS (Time-
Sharing), FX (Fixed Priority), and RT (Real-
Time) and supports flexible mapping between
kernel threads and lightweight processes,
which leads to efficient context switching and
thread level parallelism. More qualified CPU
limit, processor sets and resource usage per-
process tracking facilities are also included in

Solaris, allowing one to have a detailed control
of the system behavior. They increase
predictability and load balancing through
these mechanisms and this is very useful in
server and cloud workloads where resource
isolation is important (Papadimitriou &
Moussiades, 2018; McDougall & Mauro,
2007).
Threading Models
Windows has applied threads as fundamental
units of execution to processes and then
manipulated them by kernel-mode and user-
mode scheduling mechanisms. All threads are
created and handled through the Windows
API and have a priority level, stack, and a
unique thread ID that makes it possible to
control execution, suspension and terminate
(Papadimitriou & Moussiades, 2018).
Windows kernel uses threads instead of
processes to schedule and this permits much
more control in terms of CPU utilization,
particularly on applications that spawn
multiple concurrent threads. Windows default
threading model is a preemptive and priority
driven model though fiber based threading
can be applied to manually schedule user mode
threads providing lightweight control which
has fewer moments of context switching. But
intra-thread communication usually needs
synchronization primitives such as mutexes,
semaphores and events which may, in turn,
mean contention and complexity in situations
of high concurrency (Vogels, 1999).
Linux supports the use of threading and the
model adopted there is the POSIX threads
(pthreads) model and threads are regarded as
lightweight processes which are created using
a system call, clone(). The threads have the
same memory space, file descriptors and signal
handlers of the parent process, which allows
sharing information and may overcome the

14

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

overhead cost of context switching (Bovet &
Cesati, 2000). The Completely Fair Scheduler

15

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

(CFS) is a virtual runtime management
method that focuses more on proportional
fairness;scheduling the thread across the run
time instead of enforcing a relative strict
priority. Linux can run kernel-level threads as
well as user-level threads, but the former are
more popular because of their scalability and
direct polling
by OS scheduler. Although threading in Linux
is very efficient, some element of challenge can
be observed and faced in parts of the thread-
intensive applications in its capabilities in
synchronization, CPU binding, and cache
coherence in the multicore set-ups (Oliveira et
al., 2022).
Solaris uses an exclusive two-order threading
system, in which user-level threads are
mapped to kernel-level Lightweight
Processes (LWPs), and this support offers
additional freedom to control parallel
execution (McDougall & Mauro, 2007). Both
the user-level library and the kernel schedule
threads and thus multiple user threads can be
active simultaneously on accessible processors.
Solaris has also introduced the concept of
bound threads, so that a user thread never
gets disassociated with a LWP again once
bound, and an application with a deployment
thus has predictable latency-sensitive
execution. This model reduces overhead in the
creation and destruction of threads, and this
model improves scalability of multithreaded
applications. Also, Solaris provides multiple
scheduling classes andreal-time threads and
can schedule the critical work-load with no
starvation of the less important processes
(Papadimitriou & Moussiades, 2018).
Although two-level model is more effective in
control and performance, it may bring
complexity to the thread management as new
layer of abstraction is introduced
Memory Management
Memory management in Windows has taken
the form of layered implementation that

differentiates between paged and non-paged
memory pools and renders an abstract virtual
address space presentation to every process
coupled with the provision of an effective
kernel-mode processing of memory. Practical
memory monitoring is through Page Frame
Number (PFN) catalogs, and it is the
obligation of the Virtual Memory Manager
(VMM) to allocate, reserve, and decommit
memory pages dependent on the arrangement
of use and application requirements
(Papadimitriou & Moussiades, 2018).
Windows also has capabilities on memory
mapped files, shared memory, and heap
management and protection of the memory
takes place through access rights and page
level-permissions. Garbage collection on
managed applications is also available as part
of the system and the Memory Manager is
used to check working sets and to prune them
when the memory pressure is observed.
Although the structure of memory
management in Windows is very organized,
memory-intensive applications challenge
memory through fragmentation and
overheads to internal data structures (Vogels,
1999; Xu & Wang, 2024).
Linux employs zone-based memory anatomy,
that is, it categorizes the physical memory
into various zones, including ZONE_DMA,
ZONE_NORMAL, and ZONE_HIGHMEM,
and allocates each particular zone separately
in order to serve devices that have varying
addressing capability (Bovet & Cesati, 2000).
The buddy system and the slab allocator are
used to allocate large and frequent small-sized
allocations to kernel functions respectively,
and these methods are to minimize the
fragmentation and accelerate reusing memory.
Moreover, the Linux Kernel provides page
cache, slab cache and swap mechanisms, which
are collaborated to police the meter between
performance and memory consumption.
Protection and isolation of processes in their

16

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

memory is provided by page tables
implemented in hardware, through an MMU.
Despite Linux's excellent
efficiency and modularity, some workloads
can become caught in latency spikes due to
memory strain or invalidation solicitation
(Oliveira et al., 2022).
Solaris has a more modular and dynamic
attitude toward memory management, and
allows high- end functions, including memory
capping, resource pools, and the capability to
dynamically reconfigure against application
changes. Virtual Address Cache (VAC) and
Unified Page Cache manage physical memory
by causing a reduction in redundancy between
file system cache and anonymous memory
(McDougall & Mauro, 2007). It has a slab
allocator on kernel memory and memory
resources can be divided per project or zone,
which enhances both predictability and
performance isolation on multi-tenant
systems. The Solaris operating system also
provides tools in memory accounting and
real-time usage monitoring, which helps
administrators to modify the memory
behaviour and find bottlenecks. However,
though Solaris is tuned towards high-
throughput and mission-critical environment
deployment, it can become harder under the
heterogenous or unpredictable workloads
situation (Papadimitriou & Moussiades, 2018).
Virtual Memory
Virtual memory implementation in windows
has taken the form of a demand paged system
with each process being assigned a virtual
address space shared privately with all other
allocation and loading of memory pages to
physical memory only on demand. In the case
of a page reference, where a page is read in
memory, it leads to a page hit when the next
access has a minimum delay but in the case of
a page fault (page miss), the memory manager
realizes there is a page fault and reads the
requested material cold in the disk into RAM

(Papadimitriou & Moussiades, 2018). To
maintain the set of pages actively used by each
process, working sets in windows measure the
active pages of each process and an up-
threshing mechanism is activated when the
pressure on the memory grows to cut off the
least popular pages. Some other types of list
present in the system include the standby list
and the modified list that are useful in
reclaiming the memory effectively without
discarding reusable pages as soon as they arise.
Whereas Windows virtual memory
subsystem is engineered in a manner that
optimizes throughput, it is possible to add
latency on a system with less RAM or very
high level of I/O (Vogels, 1999).
In Linux, the implementation of virtual
memory consists of an integrated scheme of
paging, demand-loading and memory
extension by means of swap, and process i.e.
the individually allocated virtual address
spaces is managed by Memory Management
Unit (MMU) and kernel data structures
including mm_struct (Bovet & Cesati, 2000).
Page hits are managed immediately by the
Translation Lookaside Buffer (TLB), and page
faults invoke the page fault handler to make a
decision on whether or not to allocate a new
page, read in an existing page or to kill the
process with an invalid access. The Least
Recently Used (LRU) algorithm with aging
that Linux uses in paging replacement and a
swap area, respectively, when physical
memory is exhausted. Page faults, hits, and
memory pressure can be monitored in the
real-time using vmstat utility and
/proc/meminfo interface. Although, the
system runs optimally on normal workloads,
too many
paging or thrashing can break down
performance on memory demands that are
more than the physical space available
(Oliveira et al., 2022).

17

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

The Solaris virtual memory subsystem is
closely coupled with file system and I/O
management layers and engineering focuses
on ensuring scalability, fault tolerance and
efficient page management in an enterprise-
class system. Solaris allocates memory
anonymously both for heaps and stacks and
file backed regions are mapped and
distinguished in page fault processing. The
problem of page hits is solved quickly with the
help of the layered cache hierarchy, such as
Adaptive Replacement Cache (ARC) in the
system where ZFS is used, which enhances
memory re-use and avoids the useless disk I/O
(McDougall & Mauro, 2007). Page misses are
controlled by predictive paging and the
system also has large pages and shared
memory segments, which improves
performance of applications like databases.
Solaris also monitors memory in a per-
process basis and has dynamic page scanner
threads which keep a balance in the memory
by discarding pages which are not used
frequently. The design eliminates paging
overhead, offers continuous response time
especially in a load that is high in memory
throughput and low latency (Papadimitriou &
Moussiades, 2018).
File Systems
The file system architecture of Windows has
focused on NTFS (New Technology File
System), first introduced to overcome the
restrictions of FAT, to make available
tomorrow such features as file system
journaling, access control lists (ACLs), and file
system metadata tracking. NTFS is designed
and organized as a metadata intensive system,
this is, almost all data such as information on
files and hierarchy of directories is stored as
files itself in the Master File Table (MFT)
(Vogels, 1999). This structure enables fast
access to the attributes of files and has the
capability of supporting advanced features
including encryption, compression and disk

quota. NTFS has also included a change
journal, which keeps track of the changes to
enhance its recovery activities and
synchronization. Although robust, metadata
procedures and journaling costs can create
performance bottlenecks when big file
operations or composite I/O are undertaken
(Xu & Wang, 2024).
Linux has numerous file systems however,
ext4 is the most commonly supported as it is
stable, backward compatible and is faster than
other ext file systems. More so it reduces
fragmentation through allocation of
contiguous blocks intended to store files
(login, 2007). Also on the list is delayed
allocation, persistent preallocation and
checksumming of the journal that not only
enhances reliability but also enhances write
performance. More than ext4, Linux possesses
modern file systems like Btrfs and XFS that
have volume management, snapshotting
built-in, and on- demand inode allocation of
enterprise-level workloads. Such flexibility
enables the administrators to select a file
system on a workload basis, but compatibility
and tuning requirements could raise the
complexity of the configuration (IRJET,
2021).
ZFS replaces the logical volume manager, and
it applies such copy-on-write (COW)
techniques that will guarantee that, even when
computer crashes are experienced, given issues
of data integrity

18

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

are at no risk (McDougall & Mauro, 2007). One
of the most significant features of ZFS is
Adaptive Replacement Cache (ARC) that
offers the efficient block-level caching and
boosts the read/write throughput in large
systems. ZFS also provides end-to-end
checksumming,

redundancy via RAID- Z, and data healing in
automated mode to prevent undetectable data
corruption. Even though ZFS uses more
memory than the simpler file systems, it
provides unrivaled scalability, which is why it
is perfect when used in high-availability
servers and on storage-intensive applications
(Levy & Silberschatz, 1989; Papadimitriou &
Moussiades, 2018).

Table:

Component Windows Linux Solaris Our Suggestions

Kernel Mode Hybrid kernel Monolithic
kernel

Modular
monolithic kernel
with kernel
preemption

Solaris has
modular control
and preemption;
Linux is flexible;
Windows is a
compromise
between usability
and control.

Process
Management

Object-oriented
process
structures

task_struct and
Completely Fair
Scheduler (CFS)

Resource pools
and scheduling
classes

Solaris is suited for
enterprise
workload control;
Linux is
responsive;
Windows has
detailed object-
based
management.

Threading
Models

Kernel-mode
threads and
fibers

POSIX threads
using clone()

Two-level model
with
Lightweight
Processes
(LWPs)

Solaris supports
scalable threading;
Linux is optimized
for performance;
Windows offers
flexible threading
with fibers.

19

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

Memory
Management

Paged/non-
paged pools and
PFN database

Zone-based
management
with slab and
buddy systems

Slab allocator
and memory
resource pools

Solaris allows fine-
grained control;
Linux is
performance-
efficient; Windows
is organized but
prone to
fragmentation.

Virtual Memory
(Page Hit &
Miss)

Working sets
and page
trimming

Swap and Least
Recently Used
(LRU)

Predictive paging
with ARC in ZFS

Solaris excels with
ARC cache; Linux
has a balanced
strategy; Windows

 may underperform
with limited RAM.

File Systems NTFS with
journaling and
MFT

ext4, Btrfs, XFS ZFS with Copy-
on-Write, ARC,
and
checksumming

ZFS in Solaris is
ideal for high-
integrity storage;
Linux supports
multiple file
systems; NTFS in
Windows is secure
and backward-
compatible.

20

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

Discussion
Comparative analysis of Windows,
Linux and Solaris operating systems
highlights some of the major
architectural and functional differences
that really affect the performance,
flexibility, and scalability of the system.
Every OS uses varying approaches in the
execution of such core elements as the
kernel, memory, the processes and
threads, file systems and virtual memory.
These distinctions conform to each
system design philosophies and intended
environments by users. Under kernel
architecture, Windows uses a hybrid
design, balancing usability and
performance, whereas Linux resorted to
a monolithic kernel model which is
efficient and reflects transparency.
Solaris is characterized by a monolithic-
kernel with modularity and kernel
preemption which improves control and
responsiveness of high-performance in
enterprise applications. There are also
wide variations in the process
management techniques. Windows
applies object-oriented process
structures which are compatible with a
more object-oriented structure and
architecture. The Linux task_struct
structure and Completely Fair Scheduler
makes it responsive and fair and thus
attractive to general-purpose computing.
Solaris however offer advanced process
control in terms of resources pools and
scheduling classes, making it the best in
multi user and enterprise worlds where
work segments and control is necessary.
In the case of threading models, the two-
level scheme of Solaris based on the use
of LWPs is remarkable due to its
approach to scalability, so the two-level
scheme is ideal to multitasking systems
heavy. Linux uses performance-
optimized POSIX threads, but Windows
supports both kernel threads and
lightweight fibers. This has made
Windows flexible to different possible
applications but not particularly
effective on thread scalability unlike

Solaris. The memory management
systems also further distinguish these
operating systems.
Linux follows a zone scheme along with
slab and buddy allocators, which are low
overhead and very efficient.Windows
uses paged and non-paged pools with a
PFN database and delivers well
structured memory management though
at risk of fragmentation. Solaris once
again targets enterprise requirements,
with slab based allocation with resource
pools to provide detailed control and
optimised performance. Even though in
the sphere of virtual memory Solaris
came first with its ARC integrated
predictive paging via ZFS, which has
better ability to manage cache. Linux
provides a fair technique in manageable
space with the use of swap and LRU
strategies, whereas Windows provides
more intensive consideration in
functioning sets and cutting strategies,
which can deteriorate with a limited
RAM condition. Such disparities
indicate Solarisas an effective option in
applications that are in demand of heavy
memory applications. Lastly, Solaris has
support within the file system with its
ZFS that is known to have a high
integrity, checksumming, and Copy-on-
Write architecture. Linux supports a
large variety, as it has ext4, Btrfs and
XFS that enable it to adapt to numerous
applications. Windows has not yet
moved on to NTFS, and remains
backward-compatible and secure,
although not nearly as scalable or fault-
tolerant as ZFS. In general, the
comparison reflects that Solaris is ideal
in scenarios that entail enterprise level,
high throughput, modular control and
stability. Linux takes advantage of high
flexibility and performance in
development and general purpose tasks
compared to Windows that is user-
friendly with well-organized
management, therefore suitable to the
environment of personal computers and
administration.

21

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

Conclusion
The above review has critically analyzed
the architectural and operational
difference between Windows, Linux, and
Solaris operating systems, key examples
of architecture and operation features
include kernel modal, process and
memory control, threading style, file
system and virtual memory protocol. All
systems have their own strengths
closely related to their design
philosophy and the intended field of
application. Windows is characterized
by an orderly and customer- friendly
system where object-oriented
management and compatibility is
possible with corresponding NTFS, a
system that is appropriate to the
administration and desktop. Linux,
which has a monolithic kernel, flexible
threading, and effective memory plans, is
a good option among developers and
general-purpose computing. Solaris,
being developed with modularity, kernel
preemption, and state-of-the-art creates
such as ZFS and ARC in mind and is
especially geared towards large-scale
high-integrity systems which require
both scale and the ability to gain and
exercise a fine-grained level of control. In
practice, none of the operating systems
tops every single metric; it is all about
context when it comes to the best fitting
option. At the enterprise-level, Solaris is
light-years ahead, Linux is the best
regarding performance and flexibility,
and windows offer a happy medium and
an easy way to do organized work. Such
comparative perception allows making
informed choices in system designing,
deployment, and optimization within the
various computing landscape.
References
1) Anderson, T. E., Bershad, B. N.,

Lazowska, E. D., & Levy, H. M.
(1991). Scheduler

2) activations: Effective kernel support
for the user-level management of
parallelism. ACM Transactions on

Computer Systems (TOCS), 10(1), 53–
79.

3) https://doi.org/10.1145/103727.10
3729

4) Badam, A., Kashyap, S.,
Chidambaram, V., Prabhakaran, V.,
& Gunawi, H. S. (2019).

5) Optimizing systems for persistent
memory with SplitFS. In 11th
USENIX Symposium on Operating
Systems Design and Implementation
(OSDI 19), 105–120.

6) Druschel, P., & Kaashoek, M. F.
(1996). A comparison of mechanisms
for efficient

7) communication in multiprocessor
operating systems. In Proceedings of
the First USENIX Symposium on
Operating Systems Design and
Implementation (OSDI ’94).

8) Kahanwal, B. S. (2013).
Classification and comparison of file
systems. International Journal of
Advanced Research in Computer
Science and Software Engineering, 3(1),
295–300.

9) Klein, M., Rajkumar, R., & Lehoczky,
J. P. (2000). A partitioning operating
system for predictable execution
and isolation. In Proceedings of the
IEEE Real-Time Systems

10) Symposium (RTSS), 231–242.
https://doi.org/10.1109/REAL.200
0.896049

11) McKenney, P. E., & Slingwine, J. D.
(1998). Read-copy update: Using
execution history to solve
concurrency problems. In
Proceedings of Parallel and
Distributed Computing and Systems
(PDCS), 509–518.

12) POSIX.1c-1995. (1995). Information
technology—Portable Operating
System Interface (POSIX)—Part 1:
System Application Program Interface
(API), Amendment 1: Realtime
Extensions [C Language]. IEEE Std
1003.1c-1995.

https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1109/REAL.2000.896049
https://doi.org/10.1109/REAL.2000.896049

22

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

13) Rajkumar, R., Sha, L., Lehoczky, J.
P., & Zelenka, J. (1998). Resource
kernels: A

14) resource-centric approach to real-
time and multimedia systems. In
Proceedings of SPIE Multimedia
Computing and Networking Conference,
150–164.

15) Silberschatz, A., Galvin, P. B., &
Gagne, G. (2018). Operating System
Concepts (10th ed.). Wiley.

16) Klein, J., & Seltzer, M. (1999). The
interrupt and process models:
Performance and flexibility for
high-speed networking. In
Proceedings of the USENIX
Symposium on Operating Systems
Design and Implementation (OSDI).

17) Zadok, E., & Nieh, J. (2000). FiST: A
language for stackable file systems.
In Proceedings of the USENIX Annual
Technical Conference, 55–70.

18) Sipek, J., Pericleous, Y., & Zadok, E.
(2007). Kernel support for stackable
file systems.

19) Proceedings of the Ottawa Linux
Symposium, 2, 223–227.

20) Zadok, E., Badulescu, I., & Shender,
A. (1999). Extending file systems
using stackable templates. In
Proceedings of the Annual USENIX
Technical Conference, 57–70.

21) Narayan, S., Mehta, R. K., & Chandy,
J. A. (2010). User space storage
system stack modules with file level
control. In Proceedings of the 12th
Annual Linux Symposium, 189–196.

22) Rosenthal, D. S. H. (1990). Evolving
the vnode interface. In Proceedings of
the USENIX Technical Conference,
107–118.Rosenthal, D. S. H. (1992).
Requirements for a “stacking”
vnode/VFS interface (Technical
Report SD-01-02-N014). UNIX
International.

23) Zadok, E., Iyer, R., Joukov, N.,
Sivathanu, G., & Wright, C. P.
(2006). On incremental file system

development. ACM Transactions on
Storage (TOS), 2(2), 161–196.

24) https://doi.org/10.1145/1149964.1
149967

25) Kahanwal, B. S., Singh, T. P., &
Tuteja, R. K. (2011). Performance
evaluation of Java File Security
System (JFSS). Advances in Applied
Science Research, 2(6), 254–260.

26) Kahanwal, B. S., Singh, T. P., &
Tuteja, R. K. (2011). A Windows-
based Java File

27) Security System (JFSS). International
Journal of Computer Science &
Technology, 2(3), 25–29.

28) Kahanwal, B. S., Singh, T. P.,
Bhargava, R., & Singh, G. P. (2012).
File system – A component of
operating system. Asian Journal of
Computer Science and Information
Technology, 2(5), 124–128.

29) Idris, A., Aliyu, A. A., & Muhammad,
U. S. (2022). Comparative analysis of
modern operating systems. Nigerian
Journal of Computing, Engineering
and Technology (NIJOCET), 1(2),
50–64.

30) Papadimitriou, S., & Moussiades, L.
(2016). A comparative evaluation of
core kernel features of the recent
Linux, FreeBSD, Solaris and
Windows operating systems. In
Proceedings of the World Congress on
Engineering (WCE), London, UK.

31) Vogels, W. (1999). File system usage
in Windows NT 4.0. Proceedings of
the Seventeenth ACM Symposium on
Operating Systems Principles, 93–109.

32) https://doi.org/10.1145/319344.31
9158

33) Nikhil, K., Hariprasad, S. A., &
Aditya, B. (2021). Comparative
study on various file system
implementations on different OS.
International Research Journal of
Engineering and Technology (IRJET),
8(11), 1186–1191.

https://doi.org/10.1145/319344.319158
https://doi.org/10.1145/319344.319158

23

 Journal of Emerging Technology and Digital

Transformation
Online ISSN

Print ISSN

3006-9726

3006-9718

Volume . 4 Issue . 1 (2025)

34) Ding, Y., Bolker, E., & Kumar, A.
(2003). Performance implications of
hyper-threading.

35) Proceedings of the Computer
Measurement Group’s International
Conference.

36) Nakajima, J., & Pallipadi, V. (2002).
Enhancements for hyper-threading
technology in the operating system.
2nd Workshop on Industrial
Experiences with Systems Software.

37) Lyerly, R., Barbalace, A.,
Jelesnianski, C., Legout, V., Carno,
A., & Ravindran, B. (2016).
Operating system process and
thread migration in heterogeneous
platforms. MARS 2016 Workshop.

38) Draves, R. P., Bershad, B. N., Rashid,
R. F., & Dean, R. W. (1991). Using
continuations to implement thread
management and communication in
operating systems. ACM

39) SIGOPS Operating Systems Review,
25(5), 122–136.
https://doi.org/10.1145/121132.12
1155

40) Kumar, N., & Shukla, S. (2015). A
comparative evaluation of core
kernel design

41) approaches. International Journal of
Scientific and Research Publications,
5(7), 1–6.

42) Kumar, A., & Singh, R. (2020).
Memory management techniques in
operating systems: A survey.
International Journal of Future
Generation Communication and
Networking, 13(3), 1138–1145.

43) Ehsan, M., & Hussain, S. (2019).
Performance analysis of different
file systems in Linux environment.
International Journal of Innovative
Technology and Exploring
Engineering (IJITEE), 8(11), 1190–
1194.

44) Dandamudi, S. P. (2005).
Fundamentals of computer
organization and design. Springer.

45) Mogul, J. C. (1989). The association
of system performance with UNIX
memory management. USENIX
Conference Proceedings, 1–15.

46) Sharma, R., & Tiwari, A. (2016).
Survey of various process
scheduling algorithms.

47) African Journal of Computing & ICT,
9(1), 1–7.

48) Jain, P., & Nema, R. K. (2015). Real-
time micro-kernel threads-based
operating system (MiThOS).
International Journal of Engineering
Research and Applications (IJERA),
5(4), 81–86.

49) Mahajan, A., & Sood, M. (2014).
Real-time OS for wireless sensor
networks: An event- driven
multithreaded approach.
International Journal of Embedded
Systems and

50) Applications, 4(3), 1–8.
51) Kumar, V. (2016). File system

design and implementation
techniques: A survey.

52) International Research Journal of
Engineering and Technology (IRJET),
3(7), 1–6.

53) Goyal, M., & Singh, S. (2016). Role
of process and memory management
in Windows, Linux, and Mac OS.
International Journal of Advanced
Research in Computer Science, 7(6),
100–106.

54) McKusick, M. K., & Neville-Neil, G.
V. (2004). The design and
implementation of the FreeBSD
operating system. Addison-Wesley
Professional.

55) Tanenbaum, A. S., & Bos, H. (2015).
Modern operating systems (4th ed.).
Pearson.

https://doi.org/10.1145/121132.121155
https://doi.org/10.1145/121132.121155

