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ABSTRACTAbstractAbstct 

All current computing systems are based on the functioning of operating systems (OS), which perform the functions 
of hardware abstraction, resource allocation, and process control. These various platforms of OS offer several 
options, and one is to compare the best and the most suitable to the particular architecture and use cases which 
demand a comparative analysis that delves into the mechanism and efficiency of operation. This paper gives a 
comparative review of three popular operating systems, Windows, Linux, and Solaris, in terms of important 
aspects like the process management system, file systems, threading system, memory management, virtual memory 
operations (page hits and misses), and kernel mode operations. Examine several peer-reviewed research articles 
and technical reports critically. This piece of work isolates the architectural distinctions, operational plans, and 
system-level innovations that mark these OSs. Windows focuses on ease of use and kernel modification; Linux 
focuses on modularity and open-source flexibility; while Solaris focuses on enterprise network scalability and high 
throughput. The results add a few helpful computer science contributions to the discussion of the design choices in 
operating systems and their results on the performance, stability, and resource utilization in various computing 
situations. 
Keywords: Operating Systems, Windows, Linux, Solaris, Process Management, File Systems, Threading 
Models, Memory Management, Virtual Memory, Kernel Architecture, Comparative Analysis. 
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Introduction 
 
Operating system is described as the 
underlying software layer which enables 
interaction among hard ware resources and 
software applications, and has taken a form 
which permits it to control important 
functions of a system including memory 
handling, process creation, file operations and 
device management. Its aim is to guarantee 
effectiveness in use of resources and stability, 
fairness, and security when carrying out 
various activities. Nonetheless, designing and 
implementing operating systems have long 
remained fraught with such challenges, 
among others, to have them efficiently 
multitask, protect their memory, coordinate 
I/O choices and optimize their performance on 
various hardware platforms (Papadimitriou & 
Moussiades, 2018). 
Varying operating systems have made 
different approaches and architectural plans 
and mechanisms at the system level to tackle 
the challenges. An example is the transaction of 
Windows, which has a hybrid architecture of a 
kernel, a layered structure, subsystem 
isolation, fine-grained access control, and 
modular functionality, although this system 
can make complexities of low- level operations 
and create performance obstructions under 
some work loads (Vogels, 1999). However, 
Linux instead uses monolithic (but not 
modular) kernel architecture, and has been 
made flexible, able to be developed 
community-wide, and responsive to real-time 
tasks, particularly with regard to I/O-latency 
and interactivity tasks (Bovet & Cesati, 2000; 
Oliveira et al., 2022). Solaris, which has been 
designed to focus more on enterprise level 
systems, proposes project-based resource 
administration, threading at the kernel level 
and bundling in of the ZFS that all together 
facilitate the aspect of high reliability, 
scalability and efficient data management 

(Levy & Silberschatz, 1989; McDougall & 
Mauro, 2007). 
The influence of these three systems 
demonstrates opposite points of view about OS 
development. whereas Windows focuses on 
user-friendliness, compatibility with old 
programs, Linus concentrates on 
transparency, user-configuration and speed. 
Solaris, in its turn, offers an enterprise type of 
framework that supports strong scheduling 
policies and enables advanced storage systems. 
As computing needs continue to change 
particularly in the fields of virtualization, 
cloud infrastructure and real-time analysis the 
background nature of the operating system 
becomes all the more crucial and the adequacy 
of design decisions will further determine the 
performance and stability of the system on a 
whole (Papadimitriou & Moussiades, 2018; Xu 
& Wang, 2024). 
Kernel Mode 
The kernel mode in Windows is a privileged 
level of execution on which core system 
services, device drivers, and the executive 
portion of the operating system execute, 
providing unrestricted access to system 
memory and hardware. Windows architecture 
operates on the hybrid kernel model: 
separating subsystems into a microkernel-like 
architecture, and combining it with the 
monolithic properties in terms of performance 
(Papadimitriou & Moussiades, 2018). The 
Kernel, Executive, Hardware Abstraction 
Layer (HAL), and Device Drivers are core 
components and they run in kernel mode, and 
inter-module communication is done by using 
dedicated interfaces. Although this structure 
is more stable and modular, the transition 
between user and kernel mode can create 
overhead where the system call or I/O is 
frequent (Vogels, 1999). Kernel-mode activities 
are secured using security mechanisms such as 
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kernel patch protection and signed drivers, 
although any vulnerability in a privileged 

component can enable subversion of the whole 
system. 

A monolithic kernel approach has been 
adopted in Linux, which implements most of 
the system services, such as device drivers, file 
systems, memory handling, in kernel mode 
and applications in user space communicate 
with these services through system calls. 
Kernel modules do (however) run in the 
privileged mode of the core kernel, so that 
both benefit and disadvantage remains as 
compared to the core kernel (Bovet & Cesati, 
2000). High-performance interfaces of the 
system calls, like sysenter/sysexit or int 0x80, 
are often used to optimize the context 
switches betweenuser and kernel mode, 
preemption makes it possible to interrupt 
lower-priority tasks by higher- priority ones 
even within the kernel (Oliveira et al., 2022). 
Although Linux was able to offer flexibility 
due to modularity of its extensions and allow 
fast development of the kernel, high 
separation of kernel and user code is required 
to ensure reliability and security of the system. 
Solaris has a monolithic modular kernel, with 
major services executing in the kernel mode 
but designed to enable them to be fine-grained 
controlled, configuration at run-time and fault 
containment. The kernel offers several 
scheduling classes, policies of managing 
resources, as well as a track of contract based 
services, and these policies are carried on in 
the kernel mode so that the system can be 
responsive and usage restrictions can be 
imposed (McDougall & Mauro, 2007). Solaris 
also enforces kernel preemption, meaning the 
lower-priority kernel threads can be 
preempted by the higher-priority ones thereby 
enhancing the real-time performance and 
elasticity to concurrent workloads 
(Papadimitriou & Moussiades, 2018). Kernel 
mode components will communicate using 
well organized interfaces, and the system calls 
are serviced using an efficient trap table 

mechanism which keeps an effective switch 
between user and kernel contexts. The 
reliability and modularity of operations on 
kernel mode is high in Solaris, but the 
complexity of interactions with these 
capabilities might make them more 
problematic to learn by developers and system 
administrators. 
Process Management: 
Process management has been adopted on a 
client-server model in Windows, whose 
implementation is based on a hybrid kernel 
form where subsystems of the user modes 
interrelate with the components of the kernel 
mode in an object-based abstraction. Every 
process is described by the executive object 
which includes process identifier, security 
structure, handle table and pointers to the 
thread structures. The creation of processes is 
associated with both Windows Subsystem and 
Windows Executive, and the child processes 
received many traits of parent processes, 
which are available in an organized 
duplication scheme (Papadimitriou & 
Moussiades, 2018). The task scheduling in 
Windows is priority-based and preemptive 
and is managed by a multilevel feedback queue; 
nevertheless, the system is highly 
configurable, having its ability to change the 
priorities between the threads according to 
the I/O wait times and execution behavior. 
That enables keeping responsiveness 
throughout the interactive tasks, but kernel 
switches and inter-process communication can 
have an overhead during the heavy workloads 
(Vogels, 1999; Xu & Wang, 2024). 
On the contrary, Linux handles such processes 
using a monolithic kernel which is very simple 
but highly effective in performance as far as 
scheduling and resource allocation is 
concerned. All the processes in Linux are 
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monitored via task_struct structures which 
contain metadata
 r
elated to the process such as process identifiers, 
CPU affinity, scheduling policy and memory 
mappings (Bovet & Cesati, 2000). Linux, the 
process management strategy addresses 
fairness and responsiveness with the 
Completely Fair Scheduler (CFS) where CPU 
time is apportioned fairly in accordance with 
the virtual run-time. Scheduling policies 
available in Linux are diverse, e.g. 
SCHED_FIFO, 
SCHED_RR, SCHED_OTHER, and can be 
used to place real-time, time-sharing and the 
batch processes simultaneously on the system 
without conflicts in an efficient way. Copy-on-
write techniques streamline forking 
mechanisms and the context switches of 
processes have been strongly reduced by the 
implementation of lightweight threads and 
shared memory models (Oliveira et al., 2022). 
The kernel supports multitasking well, 
however, in response to many active processes 
on a relatively small hardware, higher latency 
can be created. 
Solaris has been designed to manage the 
process in a highly-scaled and resource-
controlled fashion, as such it enhances large-
scale and high-availability distribution. All of 
processes are incapsulated by the process 
structure, project ID, and the contract ID and 
Solaris introduce resource pools and projects 
to distribute and manage the system resources 
according to administrative policies 
(McDougall & Mauro, 2007). This system 
allows many scheduling classes as TS (Time- 
Sharing), FX (Fixed Priority), and RT (Real-
Time) and supports flexible mapping between 
kernel threads and lightweight processes, 
which leads to efficient context switching and 
thread level parallelism. More qualified CPU 
limit, processor sets and resource usage per-
process tracking facilities are also included in 

Solaris, allowing one to have a detailed control 
of the system behavior. They increase 
predictability and load balancing through 
these mechanisms and this is very useful in 
server and cloud workloads where resource 
isolation is important (Papadimitriou & 
Moussiades, 2018; McDougall & Mauro, 
2007). 
Threading Models 
Windows has applied threads as fundamental 
units of execution to processes and then 
manipulated them by kernel-mode and user-
mode scheduling mechanisms. All threads are 
created and handled through the Windows 
API and have a priority level, stack, and a 
unique thread ID that makes it possible to 
control execution, suspension and terminate 
(Papadimitriou & Moussiades, 2018). 
Windows kernel uses threads instead of 
processes to schedule and this permits much 
more control in terms of CPU utilization, 
particularly on applications that spawn 
multiple concurrent threads. Windows default 
threading model is a preemptive and priority 
driven model though fiber based threading 
can be applied to manually schedule user mode 
threads providing lightweight control which 
has fewer moments of context switching. But 
intra-thread communication usually needs 
synchronization primitives such as mutexes, 
semaphores and events which may, in turn, 
mean contention and complexity in situations 
of high concurrency (Vogels, 1999). 
Linux supports the use of threading and the 
model adopted there is the POSIX threads 
(pthreads) model and threads are regarded as 
lightweight processes which are created using 
a system call, clone(). The threads have the 
same memory space, file descriptors and signal 
handlers of the parent process, which allows 
sharing information and may overcome the 
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overhead cost of context switching (Bovet & 
Cesati, 2000). The Completely Fair Scheduler 
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(CFS) is a virtual runtime management 
method that focuses more on proportional 
fairness;scheduling the thread across the run 
time instead of enforcing a relative strict 
priority. Linux can run kernel-level threads as 
well as user-level threads, but the former are 
more popular because of their scalability and 
direct polling 
by OS scheduler. Although threading in Linux 
is very efficient, some element of challenge can 
be observed and faced in parts of the thread-
intensive applications in its capabilities in 
synchronization, CPU binding, and cache 
coherence in the multicore set-ups (Oliveira et 
al., 2022). 
Solaris uses an exclusive two-order threading 
system, in which user-level threads are 
mapped to kernel-level Lightweight 
Processes (LWPs), and this support offers 
additional freedom to control parallel 
execution (McDougall & Mauro, 2007). Both 
the user-level library and the kernel schedule 
threads and thus multiple user threads can be 
active simultaneously on accessible processors. 
Solaris has also introduced the concept of 
bound threads, so that a user thread never 
gets disassociated with a LWP again once 
bound, and an application with a deployment 
thus has predictable latency-sensitive 
execution. This model reduces overhead in the 
creation and destruction of threads, and this 
model improves scalability of multithreaded 
applications. Also, Solaris provides multiple 
scheduling classes andreal-time threads and 
can schedule the critical work-load with no 
starvation of the less important processes 
(Papadimitriou & Moussiades, 2018). 
Although two-level model is more effective in 
control and performance, it may bring 
complexity to the thread management as new 
layer of abstraction is introduced 
Memory Management 
Memory management in Windows has taken 
the form of layered implementation that 

differentiates between paged and non-paged 
memory pools and renders an abstract virtual 
address space presentation to every process 
coupled with the provision of an effective 
kernel-mode processing of memory. Practical 
memory monitoring is through Page Frame 
Number (PFN) catalogs, and it is the 
obligation of the Virtual Memory Manager 
(VMM) to allocate, reserve, and decommit 
memory pages dependent on the arrangement 
of use and application requirements 
(Papadimitriou & Moussiades, 2018). 
Windows also has capabilities on memory 
mapped files, shared memory, and heap 
management and protection of the memory 
takes place through access rights and page 
level-permissions. Garbage collection on 
managed applications is also available as part 
of the system and the Memory Manager is 
used to check working sets and to prune them 
when the memory pressure is observed. 
Although the structure of memory 
management in Windows is very organized, 
memory-intensive applications challenge 
memory through fragmentation and 
overheads to internal data structures (Vogels, 
1999; Xu & Wang, 2024). 
Linux employs zone-based memory anatomy, 
that is, it categorizes the physical memory 
into various zones, including ZONE_DMA, 
ZONE_NORMAL, and ZONE_HIGHMEM, 
and allocates each particular zone separately 
in order to serve devices that have varying 
addressing capability (Bovet & Cesati, 2000). 
The buddy system and the slab allocator are 
used to allocate large and frequent small-sized 
allocations to kernel functions respectively, 
and these methods are to minimize the 
fragmentation and accelerate reusing memory. 
Moreover, the Linux Kernel provides page 
cache, slab cache and swap mechanisms, which 
are collaborated to police the meter between 
performance and memory consumption. 
Protection and isolation of processes in their 
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memory is provided by page tables 
implemented in hardware, through an MMU. 
Despite Linux's excellent 
efficiency and modularity, some workloads 
can become caught in latency spikes due to 
memory strain or invalidation solicitation 
(Oliveira et al., 2022). 
Solaris has a more modular and dynamic 
attitude toward memory management, and 
allows high- end functions, including memory 
capping, resource pools, and the capability to 
dynamically reconfigure against application 
changes. Virtual Address Cache (VAC) and 
Unified Page Cache manage physical memory 
by causing a reduction in redundancy between 
file system cache and anonymous memory 
(McDougall & Mauro, 2007). It has a slab 
allocator on kernel memory and memory 
resources can be divided per project or zone, 
which enhances both predictability and 
performance isolation on multi-tenant 
systems. The Solaris operating system also 
provides tools in memory accounting and 
real-time usage monitoring, which helps 
administrators to modify the memory 
behaviour and find bottlenecks. However, 
though Solaris is tuned towards high- 
throughput and mission-critical environment 
deployment, it can become harder under the 
heterogenous or unpredictable workloads 
situation (Papadimitriou & Moussiades, 2018). 
Virtual Memory 
Virtual memory implementation in windows 
has taken the form of a demand paged system 
with each process being assigned a virtual 
address space shared privately with all other 
allocation and loading of memory pages to 
physical memory only on demand. In the case 
of a page reference, where a page is read in 
memory, it leads to a page hit when the next 
access has a minimum delay but in the case of 
a page fault (page miss), the memory manager 
realizes there is a page fault and reads the 
requested material cold in the disk into RAM 

(Papadimitriou & Moussiades, 2018). To 
maintain the set of pages actively used by each 
process, working sets in windows measure the 
active pages of each process and an up-
threshing mechanism is activated when the 
pressure on the memory grows to cut off the 
least popular pages. Some other types of list 
present in the system include the standby list 
and the modified list that are useful in 
reclaiming the memory effectively without 
discarding reusable pages as soon as they arise. 
Whereas Windows virtual memory 
subsystem is engineered in a manner that 
optimizes throughput, it is possible to add 
latency on a system with less RAM or very 
high level of I/O (Vogels, 1999). 
In Linux, the implementation of virtual 
memory consists of an integrated scheme of 
paging, demand-loading and memory 
extension by means of swap, and process i.e. 
the individually allocated virtual address 
spaces is managed by Memory Management 
Unit (MMU) and kernel data structures 
including mm_struct (Bovet & Cesati, 2000). 
Page hits are managed immediately by the 
Translation Lookaside Buffer (TLB), and page 
faults invoke the page fault handler to make a 
decision on whether or not to allocate a new 
page, read in an existing page or to kill the 
process with an invalid access. The Least 
Recently Used (LRU) algorithm with aging 
that Linux uses in paging replacement and a 
swap area, respectively, when physical 
memory is exhausted. Page faults, hits, and 
memory pressure can be monitored in the 
real-time using vmstat utility and 
/proc/meminfo interface. Although, the 
system runs optimally on normal workloads, 
too many 
paging or thrashing can break down 
performance on memory demands that are 
more than the physical space available 
(Oliveira et al., 2022). 
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The Solaris virtual memory subsystem is 
closely coupled with file system and I/O 
management layers and engineering focuses 
on ensuring scalability, fault tolerance and 
efficient page management in an enterprise-
class system. Solaris allocates memory 
anonymously both for heaps and stacks and 
file backed regions are mapped and 
distinguished in page fault processing. The 
problem of page hits is solved quickly with the 
help of the layered cache hierarchy, such as 
Adaptive Replacement Cache (ARC) in the 
system where ZFS is used, which enhances 
memory re-use and avoids the useless disk I/O 
(McDougall & Mauro, 2007). Page misses are 
controlled by predictive paging and the 
system also has large pages and shared 
memory segments, which improves 
performance of applications like databases. 
Solaris also monitors memory in a per- 
process basis and has dynamic page scanner 
threads which keep a balance in the memory 
by discarding pages which are not used 
frequently. The design eliminates paging 
overhead, offers continuous response time 
especially in a load that is high in memory 
throughput and low latency (Papadimitriou & 
Moussiades, 2018). 
File Systems 
The file system architecture of Windows has 
focused on NTFS (New Technology File 
System), first introduced to overcome the 
restrictions of FAT, to make available 
tomorrow such features as file system 
journaling, access control lists (ACLs), and file 
system metadata tracking. NTFS is designed 
and organized as a metadata intensive system, 
this is, almost all data such as information on 
files and hierarchy of directories is stored as 
files itself in the Master File Table (MFT) 
(Vogels, 1999). This structure enables fast 
access to the attributes of files and has the 
capability of supporting advanced features 
including encryption, compression and disk 

quota. NTFS has also included a change 
journal, which keeps track of the changes to 
enhance its recovery activities and 
synchronization. Although robust, metadata 
procedures and journaling costs can create 
performance bottlenecks when big file 
operations or composite I/O are undertaken 
(Xu & Wang, 2024). 
Linux has numerous file systems however, 
ext4 is the most commonly supported as it is 
stable, backward compatible and is faster than 
other ext file systems. More so it reduces 
fragmentation through allocation of 
contiguous blocks intended to store files 
(login, 2007). Also on the list is delayed 
allocation, persistent preallocation and 
checksumming of the journal that not only 
enhances reliability but also enhances write 
performance. More than ext4, Linux possesses 
modern file systems like Btrfs and XFS that 
have volume management, snapshotting 
built-in, and on- demand inode allocation of 
enterprise-level workloads. Such flexibility 
enables the administrators to select a file 
system on a workload basis, but compatibility 
and tuning requirements could raise the 
complexity of the configuration (IRJET, 
2021). 
ZFS replaces the logical volume manager, and 
it applies such copy-on-write (COW) 
techniques that will guarantee that, even when 
computer crashes are experienced, given issues 
of data integrity 
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are at no risk (McDougall & Mauro, 2007). One 
of the most significant features of ZFS is 
Adaptive Replacement Cache (ARC) that 
offers the efficient block-level caching and 
boosts the read/write throughput in large 
systems. ZFS also provides end-to-end 
checksumming,  
 
 

redundancy via RAID- Z, and data healing in 
automated mode to prevent undetectable data 
corruption. Even though ZFS uses more 
memory than the simpler file systems, it 
provides unrivaled scalability, which is why it 
is perfect when used in high-availability 
servers and on storage-intensive applications 
(Levy & Silberschatz, 1989; Papadimitriou & 
Moussiades, 2018).

 
Table: 
 

Component Windows Linux Solaris Our Suggestions 

Kernel Mode Hybrid kernel Monolithic 
kernel 

Modular 
monolithic kernel 
with kernel 
preemption 

Solaris has 
modular control 
and preemption; 
Linux is flexible; 
Windows is a 
compromise 
between usability 
and control. 

Process 
Management 

Object-oriented 
process 
structures 

task_struct and 
Completely Fair 
Scheduler (CFS) 

Resource pools 
and scheduling 
classes 

Solaris is suited for 
enterprise 
workload control; 
Linux is 
responsive; 
Windows has 
detailed object- 
based 
management. 

Threading 
Models 

Kernel-mode 
threads and 
fibers 

POSIX threads 
using clone() 

Two-level model 
with 
Lightweight 
Processes 
(LWPs) 

Solaris supports 
scalable threading; 
Linux is optimized 
for performance; 
Windows offers 
flexible threading 
with fibers. 
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Memory 
Management 

Paged/non- 
paged pools and 
PFN database 

Zone-based 
management 
with slab and 
buddy systems 

Slab allocator 
and memory 
resource pools 

Solaris allows fine-
grained control; 
Linux is 
performance- 
efficient; Windows 
is organized but 
prone to 
fragmentation. 

Virtual Memory 
(Page Hit & 
Miss) 

Working sets 
and page 
trimming 

Swap and Least 
Recently Used 
(LRU) 

Predictive paging 
with ARC in ZFS 

Solaris excels with 
ARC cache; Linux 
has a balanced 
strategy; Windows 

    may underperform 
with limited RAM. 

File Systems NTFS with 
journaling and 
MFT 

ext4, Btrfs, XFS ZFS with Copy- 
on-Write, ARC, 
and 
checksumming 

ZFS in Solaris is 
ideal for high- 
integrity storage; 
Linux supports 
multiple file 
systems; NTFS in 
Windows is secure 
and backward- 
compatible. 
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Discussion 
Comparative analysis of Windows, 
Linux and Solaris operating systems 
highlights some of the major 
architectural and functional differences 
that really affect the performance, 
flexibility, and scalability of the system. 
Every OS uses varying approaches in the 
execution of such core elements as the 
kernel, memory, the processes and 
threads, file systems and virtual memory. 
These distinctions conform to each 
system design philosophies and intended 
environments by users. Under kernel 
architecture, Windows uses a hybrid 
design, balancing usability and 
performance, whereas Linux resorted to 
a monolithic kernel model which is 
efficient and reflects transparency. 
Solaris is characterized by a monolithic-
kernel with modularity and kernel 
preemption which improves control and 
responsiveness of high-performance in 
enterprise applications. There are also 
wide variations in the process 
management techniques. Windows 
applies object-oriented process 
structures which are compatible with a 
more object-oriented structure and 
architecture. The Linux task_struct 
structure and Completely Fair Scheduler 
makes it responsive and fair and thus 
attractive to general-purpose computing. 
Solaris however offer advanced process 
control in terms of resources pools and 
scheduling classes, making it the best in 
multi user and enterprise worlds where 
work segments and control is necessary. 
In the case of threading models, the two- 
level scheme of Solaris based on the use 
of LWPs is remarkable due to its 
approach to scalability, so the two-level 
scheme is ideal to multitasking systems 
heavy. Linux uses performance-
optimized POSIX threads, but Windows 
supports both kernel threads and 
lightweight fibers. This has made 
Windows flexible to different possible 
applications but not particularly 
effective on thread scalability unlike 

Solaris. The memory management 
systems also further distinguish these 
operating systems.  
Linux follows a zone scheme along with 
slab and buddy allocators, which are low 
overhead and very efficient.Windows 
uses paged and non-paged pools with a 
PFN database and delivers well 
structured memory management though 
at risk of fragmentation. Solaris once 
again targets enterprise requirements, 
with slab based allocation with resource 
pools to provide detailed control and 
optimised performance. Even though in 
the sphere of virtual memory Solaris 
came first with its ARC integrated 
predictive paging via ZFS, which has 
better ability to manage cache. Linux 
provides a fair technique in manageable 
space with the use of swap and LRU 
strategies, whereas Windows provides 
more intensive consideration in 
functioning sets and cutting strategies, 
which can deteriorate with a limited 
RAM condition. Such disparities 
indicate Solarisas an effective option in 
applications that are in demand of heavy 
memory applications. Lastly, Solaris has 
support within the file system with its 
ZFS that is known to have a high 
integrity, checksumming, and Copy-on-
Write architecture. Linux supports a 
large variety, as it has ext4, Btrfs and 
XFS that enable it to adapt to numerous 
applications. Windows has not yet 
moved on to NTFS, and remains 
backward-compatible and secure, 
although not nearly as scalable or fault- 
tolerant as ZFS. In general, the 
comparison reflects that Solaris is ideal 
in scenarios that entail enterprise level, 
high throughput, modular control and 
stability. Linux takes advantage of high 
flexibility and performance in 
development and general purpose tasks 
compared to Windows that is user-
friendly with well-organized 
management, therefore suitable to the 
environment of personal computers and 
administration. 
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Conclusion 
The above review has critically analyzed 
the architectural and operational 
difference between Windows, Linux, and 
Solaris operating systems, key examples 
of architecture and operation features 
include kernel modal, process and 
memory control, threading style, file 
system and virtual memory protocol. All 
systems have their own strengths 
closely related to their design 
philosophy and the intended field of 
application. Windows is characterized 
by an orderly and customer- friendly 
system where object-oriented 
management and compatibility is 
possible with corresponding NTFS, a 
system that is appropriate to the 
administration and desktop. Linux, 
which has a monolithic kernel, flexible 
threading, and effective memory plans, is 
a good option among developers and 
general-purpose computing. Solaris, 
being developed with modularity, kernel 
preemption, and state-of-the-art creates 
such as ZFS and ARC in mind and is 
especially geared towards large-scale 
high-integrity systems which require 
both scale and the ability to gain and 
exercise a fine-grained level of control. In 
practice, none of the operating systems 
tops every single metric; it is all about 
context when it comes to the best fitting 
option. At the enterprise-level, Solaris is 
light-years ahead, Linux is the best 
regarding performance and flexibility, 
and windows offer a happy medium and 
an easy way to do organized work. Such 
comparative perception allows making 
informed choices in system designing, 
deployment, and optimization within the 
various computing landscape. 
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