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Abstract: 

The widespread expansion of Internet of Things networks poses inconvenient power 
consumption challenges and demands better resource utilization since the regular IoT devices 
have low power supplies and processing power. The traditional systems are not effective in a 
centralized system as they bring about a lot of communication issues as well as the threat to 
privacy and less scalability. One of the suggested approaches to enhancing the efficiency of the 
IoT network in terms of energy consumption and appropriate performance results is a FL-based 
optimization framework. The suggested solution applies edge computer systems and local data 
processing that reduces information transfer costs as well as amounts of power consumption. 
The study is aimed at creating an energy-efficient predictive resource management model that 
integrates FL lightweight algorithms and optimization techniques to optimize the factors of 
performance of the IoT network in real-time, such as power consumption and command speed 
and rational processing. The study will be done by simulation analysis using real world data 
and federated architectural systems to ensure its performance standards. The proposed 
achievement in the form of an intelligent sustainable IoT ecosystem that does not require the 
human touch to function efficiently is there. 
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INTRODUCTION: 

The Internet of Things (IoT) has 

transformed the digital technology 

integration with the real world, forming an 

overconnected network of intelligent 

objects that are able to sense, to 

communicate, and to make independent 

decisions (Marwat, S. N. K., 2020). IoT 

networks - IoT devices: mobile phones, 

wearable devices, embedded sensors, and 

machine controllers are used to gather, 

transmit, and analyze enormous amounts of 

data in different fields such as healthcare, 

agriculture, transportation, industrial 

automation, smart cities, and home 

systems. By the early 2020s, billions of IoT 

devices were operational all over the world, 

and the trend is still growing at an 

accelerated pace, changing industries and 

daily life (Khan, A.,2020).  

In spite of these innovations, the resulting 

rise in the number of IoT devices has posed 

extremely important challenges. Although 

mass implementation of devices has 

enhanced the use of data to make decisions 

and facilitate operations, it has led to high 

energy consumption because of the 

requirement to have continuous 

communication and calculations. 

Numerous IoT devices are operated in 

power-constrained settings, depending on 

batteries or other small sources of power, 

and their continuous data transmission to 

cloud servers to process them further 

increases their energy demands (Khan, A., 

Marwat, S. N. K.,2024). This has created a 

key research imperative to realize energy 

efficient scalable IoT operations. 

The traditional centralized machine 

learning (ML) architectures that exist to 

control and optimize an IoT network have 

shown underlying inefficiencies. These 

systems not only create bottlenecks of 

communication in centralized data centres 

to be trained, but also create latency and 

scaling problems - particularly with real-

time applications like healthcare 

monitoring, smart traffic control and 

autonomous vehicles. In addition, since 

edge devices are often limited in their 

computational and memory capabilities, 

running heavy AI models on the edge 

presents any significant power and 

performance limit. On top of the energy 

issues, there have been privacy and data 

protection issues that have become critical. 

IoT-gathered sensitive information, 

especially in the health care field, should 

also adhere to the strict privacy laws like the 

HIPAA in the United States and the GDPR 

in the European Union. Traditional cloud-

based processing renders such information 

to possible breach, thus compromising 

system integrity and undermining user 

trust. 

Recently, Federated Learning (FL) has 

become the innovative way to overcome 

these problems. In contrast to the traditional 

ML methods which demand aggregating 

data in the central machine, FL supports the 

distributed model training with raw data 

remaining on the devices. A central server 

receives only the parameter updates-

gradients or weights- sent by each of the 

devices (or clients) to the server which 

builds up to a global model. The distributed 

training paradigm maintains the privacy of 

users, minimizes congestion in the network 

and also minimizes energy usage because it 

does not require transmission of raw data. 

Under FL, the IoT systems will gain 

significant advantages such as enhanced 

data privacy, reduced latency, and better 

computational efficiency. As the data is 
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stored on the local devices, the privacy risks 

are minimized, and the users will feel more 

confident and follow the regulations. 

Besides, FL reduces the network overhead 

and energy consumption- two significant 

barriers to large-scale IoT environments- by 

reducing the number of data transmissions 

and computations in centralized nodes. 

In spite of these benefits, FL in IoT also has 

its own challenges. The heterogeneity of the 

device causes unequal contributions in 

computations, which may bias the model 

performance. The connectivity between 

distributed devices is usually unstable, 

making the synchronization of a model and 

timely updates difficult. In addition, despite 

FL having reduced direct data exposure, it 

is susceptible to model poisoning and 

gradient-based reconstruction attacks. To 

solve these issues, new methods (including 

model compression (through quantization 

and pruning) and adaptive federated 

optimization and secure aggregation based 

on Differential Privacy (DP) and 

Homomorphic Encryption (HE)) are being 

developed. Recent development of new 

hardware, including NVIDIA Jetson and 

Google Coral are now helping to bridge the 

divide between hardware potential and 

computational needs on edges-based AI 

training. To improve the strength of FL 

implementations, researchers are also 

coming up with adaptive federated 

algorithms that would guarantee 

convergence in non-independent and non-

identically distributed (non-IID) data. 

The fact that FL has been adopted in 

different applications within the IoT shows 

that it can be used in a wide way. Wearable 

technology, including smartwatches and 

glucose monitors, is being used in the 

medical field to predict and protect personal 

health data through collective training of 

predictive models. In smart agriculture, 

local sensors detect the soil, weather, and 

crop conditions and allow federated 

analysis of predicting pests and optimizing 

irrigation without sharing personal farm 

data. FL brings a range of advantages to 

autonomous vehicles, including 

decentralized updates to the model, which 

ensure a higher level of safety in navigation 

and ensures independent sovereignty of 

data stored on the board. Likewise, FL 

enables predictive maintenance and 

optimization of operations in industrial 

automation without making proprietary 

data of the manufacturing process public. 

Smart cities use FL as a way of controlling 

urban infrastructure, traffic, and 

environmental sensors through sharing 

knowledge without taking away the 

independence of local systems. In the 

future, Federated Learning, 5G/6G 

networks and edge computing will 

converge and reinvent IoT intelligence. 

Cross-silo and hierarchical FL systems will 

facilitate multi-level collaboration between 

the edge devices and local gateways and 

cloud infrastructure, which supports 

scalable learning at the institutional, city, 

and organizational levels. This 

development will not only enhance 

efficiency of systems but also ethical data 

management and environmental 

sustainability, which will be critical in the 

upcoming intelligent IoT systems. 

Introduction of FL into IoT systems is a 

pivotal point on the way of achieving 

secure, adaptable, energy-efficient smart 

environments. FL eliminates the major 

vices of centralized systems: by 

disaggregating computation, preventing the 

need to transfer and exchange large 

amounts of data, and maintaining privacy. 

It is possible that future IoT networks, 
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which will be managed by the principles of 

green computing and 6G models, will also 

rely on FL as a technological basis that 

ensures distributed intelligence with the 

minimum energy consumption and the 

highest level of care by users. 

Literature Review 

The application of Federated Learning (FL) 

to the Internet of Things (IoT) has attracted 

increasing attention in recent years, 

primarily due to its potential to address 

critical challenges related to data privacy, 

energy efficiency, and real-time system 

performance. As IoT ecosystems continue 

to expand, they generate vast volumes of 

heterogeneous and sensitive data, making 

traditional centralized learning paradigms 

increasingly inefficient and risky. Current 

research efforts have therefore focused on 

enhancing the energy management and 

operational sustainability of IoT networks 

by integrating FL with advanced 

optimization techniques. These efforts aim 

to overcome the inherent limitations of 

centralized machine learning approaches, 

which often suffer from high energy 

consumption, excessive latency, and 

serious security vulnerabilities. In 

conventional systems, the continuous 

transmission of massive amounts of raw 

data to centralized server’s results in 

substantial power usage and creates 

significant privacy risks, as sensitive 

information may be exposed or intercepted 

during communication (Nguyen et al., 

2021). Such limitations have motivated 

researchers to explore decentralized 

learning paradigms, where computation and 

learning processes are distributed across 

end devices, enabling improved scalability, 

enhanced data security, and more efficient 

energy utilization. 

Federated Learning provides a 

decentralized training framework in which 

IoT devices collaboratively train a shared 

global model while retaining raw data 

locally. This approach fundamentally shifts 

the learning process from data-centric to 

model-centric communication, 

significantly reducing the need for 

continuous data transmission. As 

demonstrated by (Tariq et al. 2023), this 

decentralized mechanism not only 

mitigates privacy risks but also lowers 

communication overhead, making it well 

suited for resource-constrained IoT 

environments. Despite these advantages, 

the practical deployment of FL in IoT 

networks remains challenging. Issues such 

as non-independent and identically 

distributed (non-IID) data across devices, 

variations in hardware capabilities, and 

limited battery power complicate model 

convergence and system optimization 

(Chen et al., 2022). These challenges can 

degrade learning performance and increase 

training time if not properly managed. As a 

result, recent studies have increasingly 

emphasized improving the energy 

efficiency and robustness of FL-enabled 

IoT systems to ensure their long-term 

viability and sustainable operation. 

Given that most IoT devices operate on 

limited battery resources and possess 

constrained computational capacity, energy 

efficiency is a fundamental design 

requirement. To address these constraints, 

researchers have proposed a variety of 

optimization strategies tailored to FL 

environments. Client selection mechanisms 

prioritize the participation of devices based 

on factors such as residual energy, 

communication quality, and computational 

capability, thereby reducing unnecessary 

energy expenditure during training rounds 



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION 

ONLINE ISSN 

3006-9726 

PRINT ISSN 

VOLUME. 4 ISSUE. 4 (2025) 3006-9718 

96 

https://journalofemergingtechnologyanddigitaltransformation.com Ahmad Khan 

 

 

(Ji et al., 2023). Model compression 

techniques, including pruning and 

quantization, further enhance efficiency by 

decreasing model size and computational 

complexity, which in turn lowers 

processing energy consumption and 

memory requirements on edge devices 

(Shah & Lau, 2021). In addition, adaptive 

learning rate strategies dynamically adjust 

training parameters according to a device’s 

energy state and network conditions, 

helping to balance learning accuracy with 

power efficiency and extending the 

operational lifetime of FL-based IoT 

systems (Mukherjee & Buyya, 2024). 

Hierarchical FL architectures represent 

another effective solution, where 

intermediate aggregation is performed at 

edge or gateway nodes before global 

aggregation, significantly reducing 

communication overhead and overall 

energy usage across the network (Liu et al., 

2020). 

The integration of Mobile Edge Computing 

(MEC) with FL-based IoT systems 

represents a major advancement in 

addressing both latency and energy 

efficiency challenges. MEC brings 

computational resources closer to IoT 

devices by deploying edge servers near data 

sources, enabling faster processing and 

reducing reliance on distant cloud 

infrastructures. This proximity allows FL 

training and aggregation processes to be 

executed with lower latency and improved 

responsiveness, which is critical for real-

time and delay-sensitive applications 

(Gharehchopogh et al., 2024). The 

combination of MEC and FL is particularly 

beneficial in domains such as intelligent 

transportation systems, industrial 

automation, and smart healthcare, where 

timely decision-making is essential. In 

Wireless Sensor Networks (WSNs), which 

underpin many IoT deployments, the 

adoption of FL alongside MEC ensures that 

privacy preservation, system reliability, and 

energy efficiency are maintained even 

under strict power and bandwidth 

constraints (Gharehchopogh et al., 2024). 

Collectively, these advancements highlight 

the growing importance of energy-aware, 

decentralized learning frameworks for 

enabling scalable, secure, and sustainable 

IoT systems. 

Methodology 

The given proposal frameworks the 

development of a federated learning system 

with the optimized management of 

resources applied to the edge computing 

setting. This is a strategy that takes 

advantage of the decentralized character of 

IoT infrastructures, but maintains 

scalability, energy efficiency and low-

latency model training. The system 

architecture employs various components 

that are interdependent and that collaborate 

to implement model training, aggregation 

and optimization processes on distributed 

edge nodes and a central federated server. 

Three main components upon which the 

system design is established are edge node 

devices, federated server, and the 

communication network. The edge node 

devices are IoT entities that are charged 

with the responsibility of collecting data 

locally and training the model with the 

limited computing and power capabilities 

that they have. These gadgets tend to work 

with a limited connection and limited 

energy supply, and in this case, the effective 

use of resources is vital. The federated 

server is the center of coordination of the 

whole system, which uses Federated 

Averaging (FedAvg) algorithm to 

coordinate models’ aggregation and retain 

data privacy. The communication 

infrastructure comprises heterogenous links 
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of the wireless network, including Wi-Fi, 

LTE, and 5G networks, each with various 

latency and the reliability profiles. These 

variations are modeled in such a way that 

they reflect actual world conditions where 

transmission delays and some packet losses 

are presented affecting overall training 

efficiency and convergence time. 

It is possible to describe the federated 

learning process as a series of iterative 

rounds that consist of a number of 

consecutive steps. First, the central server 

sends the existing global model to 

individual edge devices. Local training is 

then performed on each device with its 

dataset over a series of epochs applying its 

computing power. Instead of passing raw 

data, the devices will be transmitting model 

changes only- like changes in weight- to the 

central server which will guarantee data 

privacy and lessen communication load. 

When the server receives updates in form of 

the participating nodes, the FedAvg 

algorithm is used to weighted aggregate the 

updates in order to produce a better global 

model. This new model is then re-dispersed 

back to all the involved devices and another 

round of training commences. This process 

is repeated till the global model converges 

according to the desired performance 

standards. 

Optimization of resources in the system is 

realized by the use of metaheuristic 

algorithm and is a smart way of scheduling 

computational tasks and adjusting the 

system parameters. Particle Swarm 

Optimization (PSO) and Genetic 

Algorithms (GA) are used to dynamically 

optimize key parameters like batch size, the 

number of local epochs and update 

frequency. The PSO algorithm varies these 

parameters based on other factors like the 

availability of power of these devices and 

the computing load so that energy 

consumption and accelerated convergence 

can be reached. Parallel to it the GA tries 

other parameter configurations by 

crossover operation and mutation 

operation, examining the solution space of 

the best device-level trainings. Combining 

these algorithms will result in efficient 

resource allocation and guarantee 

consistent model convergence alongside, 

reduced energy wastage across the 

machines. 

Two significant tools- NS-3 and Flower are 

used to simulate the proposed system and 

evaluate it. NS-3 is a tool that models the 

actual communication environment, which 

is used to simulate network constraints, 

latency, and packet transmission behavior 

across a wide range of wireless 

technologies. This enables realistically the 

performance and communication overhead 

of network performance in distributed IoT 

system. The Flower framework is a Python-

based federated learning infrastructure that 

offers the experiments with the needed 

federated learning infrastructure. It 

facilitates an easy adoption of FL protocols 

and allows the incorporation with 

optimization libraries like PySwarm and 

DEAP, which are applied to running PSO 

and GA algorithms. The combination of 

these tools is necessary to provide a full 

testing environment that is close to the 

dynamics of a real-world IoT network. 

There are several key measures that are 

taken to determine the performance of the 

proposed system. Power models provide 

the computation of the energy consumption 

which takes into consideration both the 

computation and the communication stages 

of device usage. Convergence rate Model 

convergence rate is measured by 

monitoring accuracy gains and loss 

decreases in consecutive training steps. The 

response time of the system to transmission 

delay and model updates are examined 

based on NSIO-3 logs to identify how 

responsive the system is to these two 

phenomena. Communication overhead is 

measured as the total amount of data 

exchanged in one training iteration, 
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whereas the scalability is checked by 

adjusting the amount of participating edge 

devices to assess the system performance in 

different load conditions. 

The simulation experiment is aimed at 

evaluating the versatility and the strength of 

the proposed framework in different 

conditions of operation. Several 

experimental conditions are performed 

changing the number of devices (10, 50 and 

100 nodes), non-ID and IID distributions of 

data and different network bandwidth 

conditions (high and low bandwidth). Also, 

a variety of heterogeneous edge device 

arrangements, spanning resource-

constrained to high-capacity nodes, are 

simulated to determine scalability to a 

variety of computational environments. The 

scenarios are repeated a number of times to 

make sure that the scenarios are statistically 

valid. All these experiments measure the 

convergence rate and resource usage 

efficiency and scalability of the system and 

empirically inform us about the advantages 

of federated learning coupled with resource 

optimization through metaheuristic in a 

mobile edge computing environment. 

Simulation and Results 

To confirm the efficiency of the suggested 

federated learning-based resource 

optimization framework in IoT networks, 

large-scale simulations were conducted in 

the conditions of realistic mobile edge 

computing. The tests were intended to be 

completed to assess the scalability, energy 

efficiency, the speed of convergence, and 

communication performance of the system 

with different device configurations, 

network conditions, and data distributions. 

Network Simulator 3 (NS-3) was relied 

upon to create a simulation environment to 

model the communication layer and 

Flower, a Python-based federated learning 

framework, to implement the distributed 

training framework. The NS-3 setting 

offered a more comprehensive description 

of wireless network behavior, such as 

latency, jitter and packet loss properties of 

the heterogeneous communication 

mediums i.e. Wi-Fi, LTE and 5G. All these 

conditions were realistic models of the 

dynamic and unstable connectivity usually 

experienced in IoT settings. The Flower 

framework allowed applying federated 

learning protocols and model aggregation 

processes. It also favored the combination 

of metaheuristic optimization algorithms 

Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA) and, in that regard, 

faced Python libraries like PySwarm and 

DEAP, so that they could effectively tune 

the parameters and allocate resources to the 

participating edge devices in an adaptive 

manner. 

This federated training was repeated within 

each simulation round, during which 

selected IoT devices trained local models 

on their own datasets and sent updates on 

the models to the central server. Model 

aggregation at the server side was done with 

the FedAvg algorithm and the process 

continued until convergence was achieved. 

Energy consumption, communication cost, 

latency and model accuracy were 

constantly checked and measured during 

these rounds. This model of energy added 

the computational cost as well as the 

communication cost to show the overall 

power consumption behavior of individual 

device. 

The experimental design involved using 

different amounts of edge devices- namely 

10, 50 and 100 nodes to experiment with 

scalability and load-throughput 

performance. Also, IID (Independent and 

Identically Distributed) and non-IID data 

distributions were also used to recreate the 

heterogeneity of the real world in IoT 



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION 

ONLINE ISSN 

3006-9726 

PRINT ISSN 

VOLUME. 4 ISSUE. 4 (2025) 3006-9718 

99 

https://journalofemergingtechnologyanddigitaltransformation.com Ahmad Khan 

 

 

systems. The non-IID data are common in 

the edge cases where local devices can 

create context-based data streams. Through 

this variation, the study looked into 

investigating the stability of convergence 

maintained through the proposed 

framework under unbalanced data 

conditions. The effect of network quality 

was tested by simulating the conditions of 

high-bandwidth and low-bandwidth, 

simulating dense and sparse connectivity. 

In addition, the computational power of 

heterogeneous device capabilities was 

modeled by giving different computational 

capacities and energy constraints to devices 

so that the adaptability of the framework 

can be studied in heterogeneous resource 

conditions. 

The Figures 4.1(a) and Figure 4.1(b) shows 

that the IID + PSO approach achieves 

higher accuracy with stable and lower 

energy consumption over training rounds, 

indicating efficient and faster convergence. 

In contrast, Non-IID + GA results in much 

lower accuracy and higher energy usage, 

highlighting the negative impact of data 

heterogeneity and increased optimization 

overhead. 

 

 

Figure 4.1(a): Model Accuracy                   

Figure 4.1(b): Average Energy 

Consumption  

The Figures 4.1(a) and Figure 4.1(b) 

compares accuracy and energy 

consumption for IID and Non-IID data 

using PSO and GA. The results show that 

IID-based training achieves higher 

accuracy than Non-IID, with IID + GA 

performing best in terms of accuracy 

growth, followed by IID + PSO. In contrast, 

both Non-IID + PSO and Non-IID + GA 

exhibit low and stagnant accuracy due to 

data heterogeneity. The energy 

consumption plot indicates that GA-based 

methods consume less energy than PSO, 

while Non-IID + PSO has the highest 

energy usage. Overall, the figure highlights 

the trade-off between accuracy and energy 

efficiency, emphasizing the impact of data 

distribution and optimization strategy on 

federated learning performance. 

 

Figure 4.2(a): Model Accuracy                   

Figure 4.2(b): Average Energy 

Consumption  

Table 4.1: Accuracy and Energy 

Comparison of FL Scenarios 

Scenario 

Final 

Accuracy 

(Round 5) 

Average 

Energy 

Consumption 

IID + PSO 0.352 0.0495 

IID + GA 0.431 0.0039 

Non-IID + 

PSO 
0.104i) 0.1187 

Non-IID + 

GA 
0.072 0.0050 

 

The findings showed a high increase in 

energy efficiency with the combination of 

the use of metaheuristic optimization and 
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federated learning. Adaptive resource 

scheduling developed using the PSO 

realized significant savings in total energy 

use because of changing the batch sizes, 

update rates, and local training epochs 

depending on the current condition of each 

device. The GA technique was also used in 

optimization of the learning parameters in 

the devices, in terms of convergence rate 

and low power consumption. The proposed 

system recorded energy savings between 18 

and 27 percent of the conventional fixed-

parameter federated learning systems based 

on the levels of heterogeneity of the 

devices. 

The optimized federated learning model 

converged faster to the global model 

accuracy with less communication round 

compared to the traditional federated 

learning model. Adaptive optimization 

allowed it to be integrated to ensure that the 

resource-constrained devices would 

perform their part well without exceeding 

their limits. The FedAvg algorithm showed 

the same results regardless of whether the 

data was IID or not-IID and convergence 

was slower in the non-IID case because of 

data imbalance-this was solved with help of 

the hierarchical aggregation at the edge 

nodes. The hierarchical federated design 

aided in reducing the communication 

overhead since it does intermediate 

aggregations nearer to the data sources 

resulting in high convergence speed and 

low transmission demands. 

This was indicated by the communication 

latency analysis which showed that the 

proposed framework significantly 

decreased the average round-trip delay 

relative to the traditional centralized 

learning systems. Mobile edge computing 

reduced the distance data transfers and 

accelerated the rate of synchronization 

between the federated server and edge 

nodes. Network overloading and packet 

loss were simulated to test the resilience 

and the findings obtained proved that the 

framework could still achieve an acceptable 

level of accuracy even during low-

bandwidth scenarios due to model 

compression and adaptive update 

scheduling. 

Scalability testing ensured that the system 

was consistent in accuracy and consistent 

trends in convergence as the number of 

devices involved in the system rose by 10 

to 100 devices. The federated learning 

model was optimized and was able to 

support the increased number of devices 

without substantial loss in the energy 

efficiency and training speed, confirming 

that the model could be used in large-scale 

IoT applications. 

On the whole, the results of the simulation 

prove that the introduction of federated 

learning and metaheuristic optimization of 

the resources contribute greatly to the 

effective functioning of IoT networks. The 

method guarantees the preservation of 

privacy by decentralizing the training of 

models and also results in better energy 

saving, reduction in convergence, and 

reduced communications delays. These 

findings define the framework as a viable 

and sustainable implementation of next-

generation IoT infrastructures especially in 

energy -limited and latency -sensitive 

systems. 

All the experiments confirm that the 

proposed system provides a reasonable 

trade-off between performance, privacy, 

and efficiency, which makes it quite 

appropriate to implement in emerging 6G-

enabled IoT ecosystems. The combination 

of federated learning and intelligent 

optimization functions helps to achieve 

healthier, more adaptive and intelligent 

distributed networks that are able to serve 

real-time applications of healthcare, 

transportation, automation of industries, 

and smart cities. 

Conclusion 

This paper has shown that the heterogeneity 
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in the data distribution affects the 

performance of Federated Learning 

dramatically, even in cases when it is 

supported by metaheuristic optimization of 

hyperparameter search. In line with the 

existing literature, the IID data distribution 

conditions (IID+PSO and IID+GA) had 

significantly higher model accuracy in the 

simulated rounds than the Non-IID ones. 

Although both PSO and GA demonstrated 

a certain ability at optimizing 

hyperparameters, neither did it well under 

this experimental framework at reducing 

the impact of Non-IID data on performance. 

The Genetic Algorithm in general was able 

to find hyperparameters which yielded 

lower computed energy costs than Particle 

Swarm Optimization with each of the two 

data distributions. Nevertheless, the 

decreasing energy use in the Non-IID+GA 

scenario was accompanied by an alarming 

decrease in model accuracy, which points to 

a serious trade-off existing between energy 

efficiency and model performance in highly 

heterogeneous settings. Non-IID+PSO 

scenario, even though it was more accurate 

than Non-IID+GA, had the maximum 

energy consumption. 

The next steps in the work should be 

devoted to the investigation of more 

progressive optimization goals that should 

explicitly address the accuracy, energy 

consumption, and, possibly, other 

measurement indicators of the IoT devices 

in Non-IID environments. More robust and 

energy efficient solutions to IoT intrusion 

detection and other applications can also be 

achieved through investigation of 

alternative model architectures and 

federated learning aggregation strategies 

which are specifically designed to address 

data heterogeneity in conjunction with 

metaheuristic optimization. Moreover, a 

higher number of rounds and evaluation of 

the energy model using real measurements 

of IoT devices would have given a more 

detailed picture of the long-term 

performance and practical viability of these 

methods. 
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