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Abstract: 

In cities the rising rate of road accidents is one of the major threats to not only the safety of the 
citizens but also the overall effectiveness of the traffic system. Conventional reactive measures 
like post-incident review and blanket safety initiatives tend to be deficient in keeping accidents 
at bay prior to the crash. In an attempt to fill this gap, the present research offers a proactive 
data-driven approach built upon machine learning (ML) methods that aim at predicting the 
sites of accidents (the so-called hotspots). Historical crash reports, environmental factors (e.g., 
weather, lighting), time series (e.g., peak times, time of the year), and structural characteristics 
of road networks will be measured expressly to analyze their relations with the destination of 
the crashes. Traffic incident logs, weather archives, and geospatial road data will all be 
publicly available datasets which will be used to train and validate such ML models as Random 
Forests, Support Vector Machines (SVM), and Neural Networks. The evaluation of these will 
be on the measures of their prediction of high-risk areas in terms of their accuracy, precision 
and recall. The system can therefore facilitate the smooth running of traffic by allowing prompt 
responses before the incidence of accidents occur to assist the traffic authorities to maximize 
the patrol units, enact local safety measures, upgrade urban infrastructure, and eventually, 
minimize accidents in the metropolitan road systems. 
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Road traffic accidents are a universal public 

health and safety problem. Every year 

millions of people are injured or killed in 

vehicular accidents. According to the 

World Health Organization, road traffic 

accidents are among the leading causes of 

death worldwide, and the primary cause of 

death for people aged 5 to 29 years of age. 

Despite best efforts of regulating traffic, 

improving urban planning, raising public 

awareness and enforcing road safety 

legislation, traffic-related incidents cost 

governments, transportation authorities and 

urban planners a significant amount. 

Empirical evidence has shown that traffic 

accidents are not evenly distributed across 

road networks, but rather they are 

concentrated in certain locations and have 

disproportionately high crash frequencies. 

Identifying and reducing such high-risk or 

accident-prone areas are critical in 

implementing specific safety interventions, 

as well as optimizing infrastructure 

development and law enforcement strategy. 

Conventional methods for detecting 

hotspots are generally based on historical 

crash information and simple statistical 

approaches, and often lack accuracy, 

adaptability, and predictive ability for 

dealing with the complexity and dynamics 

of modern cities. 

The explosive growth of big data of traffic, 

environment, and behavior along with the 

development of real-time data collection 

technologies (e.g., sensors, GPS devices, 

surveillance cameras, Internet of Things 

(IoT) systems, and intelligent 

transportation infrastructures) has 

markedly increased the analysis capabilities 

of smart cities (Khan, A., Marwat, S. N. K. 

,2019). The developments offer a unique 

chance to harness the power of machine 

learning (ML) and artificial intelligence 

(AI) to create real-time, predictive traffic 

safety analysis to enable transition from 

static to dynamic risk modelling (Bowen, 

2024). The motivation behind this research 

is the need to explore ML algorithms not 

only to find patterns in traffic accident data 

but also to predict the probability of traffic 

accidents in a specific location and time, 

which can bring the focus from reactive 

measures (i.e., after an accident) to 

proactive measures (i.e., before an 

accident). 

Unlike conventional statistical methods, 

which can rely on linear assumptions and 

are limited in the expressiveness of the 

models they use, ML techniques have the 

ability to capture complex non-linear 

interactions among variables and 

interactions in huge amounts of structured 

and unstructured heterogenous data. These 

capabilities allow ML models to detect 

subtle and previously unrecognized factors 

that contribute to traffic accidents that may 

not be captured by traditional approaches to 

analysis. Consequently, a spectrum of ML 

paradigms such as classification, 

regression, clustering, pattern recognition, 

and anomaly detection can be used for the 

development of predictive models to 

identify accident prone zones in near real 

time. For example, supervised learning 

algorithms that are trained on historical data 

of crashes and annotated levels of risk can 

be used to predict the risk of accidents for 

previously unseen scenarios, and 

unsupervised learning algorithms can be 

used to identify latent patterns in the spatial 

or temporal relationships without the need 

for labelled data. 

More advanced methods like deep learning 

models (convolutional, recurrent neural 

network) have other advantages in 

understanding temporal dependencies and 

sequent patterns in data regarding traffic 

accidents. These models are able to adapt to 

changing conditions such as peak hour 

congestion, seasonal weather changes, long 

term traffic behavior to allow timely and 

context-aware predictions (Tang et al., 
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2025). Reinforcement learning also offers a 

promising direction to optimize traffic 

control systems using dynamic control to 

change traffic signals, speed limits or 

warning behavior based on real-time 

feedback from the environment. The 

relevance of such adaptive systems 

specifically to the field of autonomous 

vehicle technology and the wider network 

of mutually dependent transportation 

systems is especially relevant where the 

expediency and high precision of the 

decision-making process will become 

essential.   

Another aspect of traffic accidents analysis 

of utmost importance is the integration of 

geospatial analytics through Geographic 

Information Systems (GIS). Combined 

with machine-learning methods, GIS can 

provide a spatial accurate representation of 

distributions of accidents that can be used 

by decision-makers, city planners, and 

emergency operators to make evidence-

based decisions on the development of 

infrastructure, policy formulation, and 

resource distribution. In contrast to the 

conventional analytic systems, machine-

learning based geospatial systems are real-

time systems that constantly renew their 

predictions, integrate feedback, and update 

their output according to real-time 

streaming data. This flexibility is essential 

in order to capture the ever-changing nature 

of urban landscapes: cities characterized by 

changes in population density, movement 

patterns, and the changing nature of land-

use.   

Besides, the combination of heterogeneous 

sensor information, such as meteorological 

data, car traffic cameras, mobile sensor, and 

video feeds/dashcams, allows the 

implementation of machine-learning 

models that can uncover hidden 

associations between various risk factors. 

Such predictive abilities are applied in 

practice as real-time hazard forecasting, 

dynamically routing guidance, predictive 

transportation infrastructure maintenance, 

intelligent traffic management, and 

personalized risk evaluation of human 

behavior. However, the implementation of 

such safety-critical systems requires the 

introduction of effective ethical principles 

to accommodate the issues related to data 

privacy, transparency of the algorithm, the 

elimination of bias, and other governance 

aspects to provide fair and reliable results.   

Finally, the paradigm shift that has been 

brought about by machine-learning 

technologies in road-safety management, 

shifting towards an active, data-driven 

paradigm as opposed to a mostly reactive 

one, is outlined in the present manuscript. 

Machine-learning-based traffic safety 

systems will provide a significant potential 

to reduce the human and economic cost of 

road-traffic accidents in the worldwide 

context of billions of dollars by enabling 

early detection of high-risk places and 

assisting in the timely adoption of 

preventive strategies.   

LITERATURE REVIEW   

The introduction of both Artificial 

Intelligence (AI) and Machine Learning 

(ML) to traffic safety is a paradigm shift in 

modern practise of traffic control as it shifts 

the field not to retrospective analytics of 

accidents but to risk avoidance, which is 

proactive and priori.. As urban settings 

become more complex, the potential for 

predicting and prevent/avoid RTAs, hinges 

to a great extent the use of advanced 

computational frameworks that are able to 

process streaming of heterogeneous data, 

and in real time. While traditional statistics 

methods discovered the foundation for 

safety analysis, new innovations in 2024 

and 2025 point to the fact that ML and Deep 

Learning (DL) models proved to be 

indispensable tools in finding non-linear 

space and time patterns in large scale data 
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points (Hassan et al., 2025; Hamdan & 

Sipos, 2025).  

The use of ML in crash analysis has come a 

long way since its first use in simple 

classification to complicated ensemble 

modelling. Early iterations of AI in traffic 

safety used models that were interpretable 

models like Logistic Regression (LR) and 

Decision Trees (DT). Although these 

models provide transparency, which is 

important to justify policy, they generally 

do not have the capacity to model the high-

dimensional nature of the interactions that 

are part of accident data. Ekanem (2025) 

points out that although Logistic 

Regression can yield high recall for injuries 

classification, it is very poor in predicting 

fatal accidents because it lacks the ability to 

deal with complex dependency between 

environment and vehicular factors. In order 

to overcome these limitations, ensemble 

learning approaches such as Random Forest 

(RF), Extreme Gradient Boosting 

(XGBoost) and CatBoost, have gained 

consideration, which combines and 

aggregates prediction from different weak 

learners to enhance generalizability and 

robustness. 

RF classifiers have shown amazing result in 

the black spot identification and severity 

prediction e.g. in the latest studies of U S 

crash dataset which came up with the 

accuracy rate up to 98.8% (Cohen et al. 

2023). However, the performance of these 

models is highly context-depending, a 

study conducted on the data of Indian 

highways, that showed a significant 

decrease in the testing accuracy to that of 

the training accuracy, which suggests that 

there are issues with over fitting to be 

applied in different geographical contexts 

(Hoque, I. 2025). Comparatively, Gradient 

Boosting Machines (GBMs) and its 

optimized variants have proven to be a 

better choice for the tabular crash data. 

Furthermore, a growth of research in 2025 

based on CatBoost has shown promise in 

handling categorical variables (e.g. weather 

type, road surface condition), without 

extensive preprocessing to preserve data 

integrity and enhance ranges of the 

prediction of the impact of accidents 

(Mostafa et al., 2025). While ensemble 

methods are strong in processing static 

crash reports, they cannot represent the 

spatiotemporal dynamics of traffic flow - 

how congestion changes with time and how 

traffic congestion propagates in a road 

network. Deep Learning has closed this 

gap, with Convolutional Neural Networks 

(CNN) which was initially designed for the 

processing of images are now routinely 

used in traffic grid data to extract the spatial 

feature of the risks of crashes. 

However, the most important structural 

development in the literature from 2024 to 

2025 is the adoption of Graph Neural 

Networks (GNNs). Unlike CNNs, which 

assume a grid like Euclidean structure, 

GNNs model the road network as a graph 

where intersections are nodes and roads are 

edges, and it is possible to make a 

geometrically correct representation of 

traffic flow. Doedens (2025) has shown that 

GNNs, specifically Graph Convolutional 

Networks (GCNs) and GraphSAGE, can be 

used to accurately identify high-risk factors 

using neighbor nodes. Their research 

underscores the fact that GNNs effectively 

capture network effects of crash causation 

to identify the effects of a bottleneck at one 

intersection increasing the probability of a 

crash at neighboring nodes. Hybrid 

architectures are still setting the benchmark 

in terms of predictive power by using a 

combination of CNN or GNNs together 

with Long Short-Term Memory (LSTMs) 

networks to simultaneously model the 

architectures spatially as well as over time. 

Tang et al. (2025) used vehicle trajectory 

data as the input of hybrid CNN-LSTM 

model; over 90% accuracy was obtained in 
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risk prediction of traffic accidents. 

Likewise, recent innovations, such as the 

joint TGRNN- BWCNN architecture, have 

made it possible to short-term predict crash 

occurrences in 30-minute time intervals, 

allowing traffic management centers to 

issue warnings before accidents occur 

(Bowen et al, 2024). 

Beyond working with numerical data, the 

range of applications of AI in traffic safety 

has spread to cover unstructured inputs with 

the help of Computer Vision and Large 

Language Models (LLMs). Computer 

vision algorithms especially the YOLO 

(You Only Look Once) architecture are 

now being used on edge devices capable of 

detecting hazards in real time. Rahman 

et al. (2025) used YOLOv5 in scenarios 

with high-density traffic in cities to identify 

dangerous driving behaviors (such as 

sudden lane change and tailgating) with 

high precision levels even in congested 

situations. A novel development in the 2025 

literature is the integration of LLMs on the 

traffic safety research. Yu, H., et al. (2025) 

used Transformers and LLMs to operating 

on unstructured textual data of the police 

crash data, try to granular information about 

driver behavior and the thinking context 

that is not obvious in the structured data. 

Furthermore, LLMs are being trialed as 

decision-making agents for traffic control 

systems, and they have the ability to 

interpret complex traffic and allow for 

timing of signals in traffic control, and to do 

so based on a form of logical reasoning 

instead of strict rule-based programming. 

Parallel to these developments is the rise of 

Digital Twin technology that involves the 

creation of high faithful virtual replicas of 

physical road networks; Recent 

frameworks proposed by the Federal 

Highway Administration (FHWA) and 

academic researchers utilize Digital Twins 

in order to model mixed traffic (both human 

driven and autonomous vehicles) to predict 

the outcome of safety under 3D 

environments with a level of detail not 

previously available (Wu, D., Zheng 2025; 

IJACSA, 2025). 

Despite these advanced developments, 

there are always persistent challenges to the 

field. One of the main challenges is class 

imbalance, as severe and deadly crashes are 

statistically less common than small 

accidents, so models tend to be biased to the 

majority class. While methods such as 

SMOTE (Synthetic Minority Over-

sampling Technique) and focal loss 

functions have been used, Doedens (2025) 

states that GNNs still have difficulty in the 

accurate classification of minority classes 

in highly unbalanced network data. 

Secondly, the generalizability of models 

also remains a critical issue; the 

generalization of models trained on high-

quality and sensor-rich data from developed 

regions frequently present a challenge when 

they are transferred to developing regions 

with different traffic behaviors and data 

standards. Hamdan & Sipos (2025) 

Additionally, the “Black Box” nature of 

Deep Learning continues to be a barrier to 

adoption as policymakers need Explainable 

AI (XAI) to understand why a model 

predicts that there is a high risk at a given 

location. Finally, the switching to real-time 

processing presents computational 

problems. Processing live video feeds, 

point clouds from LiDAR and V2X 

communications is demanding of software 

architectures that employ edge computing 

through low latency. As observed by Toe et 

al. (2024), in order to achieve effective 

dynamic forecasting, systems that are not 

only able to be re-trained but also adapt on-

the-fly on changing patterns of weather and 

traffic therefore details are required to the 

current scenario, which is not offered by 

most of the current static models. Looking 

into the future, the frontier of traffic safety 

can be seen on the fusion of these 
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heterogeneous technologies, where the 

fusion of GNNs for spatial reasoning, 

LLMs for semantic understanding, and 

Digital Twins for scenario simulation will 

bring a paradigm shift in traffic safety from 

being a retrospective science to a 

predictive, real-time preventive capability. 

METHODOLOGY 

In the current study a data-drive predictive 

framework was used to identify zones of 

increased risk of traffic accidents, called 

hotspots, and to predict the severity of 

traffic accidents occurring within the 

hotspots. The methodology was structured 

in a four phase and hands-on way: the 

construction of a complex cohort of 

different data sources from various origins 

and its combination; the elaborate 

preprocessing and feature engineering; the 

construction of a panel of comparative 

machine learning models; and the 

construction of a comprehensive protocol 

of validation of the performance both using 

metrics related to the domain under 

judgment and through geospatial visuals. 

The overall goal was to be able to translate 

complex input information in actionable 

insights in road safety. 

The empirical base upon which this study 

was carried out was developed by the 

prudent combination of disparate but 

significantly high-quality publicly 

accessible datasets and then harmonized on 

a spatial and temporal scale to create an all-

inclusive, multi-dimensional feature space. 

The fundamental part of this system 

consisted of structured accident records that 

were collected by the U.S. Department of 

Transportation and the United Kingdom 

STATS19 database, which provided the 

granular data on the accident geolocation, 

timing, and severity; the basic records were 

supplemented with dynamic environmental 

variables such as temperature, 

precipitation, and visibility, which were 

obtained through the reputable 

meteorological API services, e.g., NOAA 

and OpenWeatherMap, through the 

accurate time matching. Furthermore, the 

dataset was enhanced with the static 

characteristics of infrastructure obtained 

from the OpenStreetMap (OSM), which 

describes the important characteristics of 

the network such as road hierarchy, speed 

regulations and density of intersections, 

before being submitted to a rigorous 

preprocessing protocol aimed at correcting 

anomalies as well as optimizing the data for 

high performance predictive modeling. 

Data cleaning consisted of the removal of 

duplicate records and correction of 

inconsistencies. Missing values were 

handled using the imputation methods, 

using the median for numerical features and 

the mode for the categorical features. All 

numerical variables were then normalized 

using Z-score normalization to ensure that 

all variables were scaled to the same level 

while categorical variables were converted 

to one-hot encoding and label encoding. 

Crucially, the ground truth for the binary 

classification objective was created using 

hotspot labeling: Density-Based Spatial 

Clustering of Applications with Noise 

(DBSCAN) was used on accident 

geolocations and spatial clusters with a 

higher density than a predefined threshold 

was considered “hotspots” thus resulting in 

the target variable. 

A thorough package of domain specific 

features was designed to locate the dynamic 

and static scenarios that contribute to 

accident risk. These were temporal (hour of 

day, day of week, season), environmental 

(precipitation rate, visibility index), and 

characteristics of the road (type of road, 

presence of intersection). Of particular 

predictive importance was the number of 

past accidents at a given radius in time (e.g. 

500 m) in previous time windows (e.g. past 
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3 months), embedding the trends of past 

incidents in the feature set. 

The research was structured in two different 

predictive tasks: hotspot-classification, 

which is binary, and crash-severity 

prediction which is multi-class. A 

comparative analysis of models was carried 

out extensively and started with baseline 

models: Logistic Regression as the linear 

benchmarking and the Random Forest as 

the nonlinear feature ranking. Later on, 

even more advanced models were used 

such as Support Vector machines, XGBoost 

(Extreme Gradient Boosting), and a Feed-

Forward Neural Network. All the models 

were optimized through a careful grid 

search concurrently with k-fold cross-

validation, thus making them to be biassed 

and resilient in parameter selection. Model 

performance was rigorously tested with a 

battery of classification measures that 

focused on the utility of the tests in a setting 

of practical importance to safety policy. 

These metrics included accuracy, precision, 

recall (sensitivity), balanced F1-score and 

the principal comparative metric of the 

ROC-AUC (Receiver Operating 

Characteristic - Area Under the Curve) 

which described the class separability 

across all decision thresholds. Visual 

analytics were performed by Matplotlib and 

Seaborn for classical statistics plots and the 

geospatial visualization software QGIS and 

the Python library Folium were used. This 

last stage allowed mapping of the predicted 

hotspots with empirical clusters in an 

interactive way, thus directly and visually 

validating for stakeholders how the 

framework works in real life. 

ANALYSIS AND EXPECTED 

RESLUTS 

The current section draws the boundaries 

of the empirical evaluation of the proposed 

predictive framework in view of two main 

research goals: (i) the binary classification 

of the accident hotspots and (ii) the i)multi-

Class predictive task of crash severity. In 

order to protect the validity of our claims of 

generalization, the performance of the 

models was benchmarked against 

established baselines using a heavily 

isolated independent test set. Subsequently, 

we increased interpretability via a feature- 

importance ranking as well as a geospatial 

consistency analysis. The experimental 

protocol began by parentheses “70 percent 

training, 15 percent validation, and 15 

percent independent testing” was used to 

divide the integrated, feature engineering 

dataset.  

This stratification was necessary to 

maintain class distributions, especially for 

the rarer categories of severity, for all 

subsets. Optimal hyper-parameters for the 

advanced and state-of-the-art machine 

learning architectures, i.e. Support Vector 

Machines (SVM), Extreme Gradient 

Boosting (XGBoost) and Feed-Forward 

Neural Networks (FFNN), were determined 

by an iterative Grid Search using a five-fold 

cross validation scheme based on the 

training data. To address the overfitting 

issue, early stopping criteria were applied 

when training the FFNN and XGBoost 

models which stops updating the weight 

when validation loss stopped improving. 

For each model optimization was done to 

minimize the cross-entropy loss and all 

performance metrics presented here were 

obtained from only the unseen, 15%, test 

set, providing an unbiased prediction of 

operational effectiveness in the real world. 

Following model training, the evaluation 

focussed on the binary classification task, 

which aimed to predict the likelihood for an 

accident to occur within a DBSCAN 

defined hotspot cluster. Within this 

Model Accuracy Precision Recall 
F1-

Score 

ROC-

AUC 

Logistic 

Regression 
0.487 0.525 0.519 0.522 0.493 

Random 

Forest 
0.533 0.562 0.617 0.588 0.526 

SVM 0.527 0.551 0.667 0.603 0.463 

XGBoost 0.567 0.583 0.691 0.633 0.543 

FFNN 0.527 0.556 0.617 0.585 0.529 
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operational milieu, the evaluation criteria 

had to achieve a very delicate balance: high 

levels of Precision were needed to reduce 

false alarms that might waste the resources 

of road management authorities, while high 

levels of Recall were imperative to ensure 

that truly dangerous zones would not slip 

through the cracks. The comparative 

analysis showed that the ensemble-based 

XGBoost model had a significant boost 

compared to the baseline architectures. 

Although the SVM provided a solid 

baseline with stable accuracy, it had issues 

to capture the non-linear decision boundary 

inherent in complex traffic data and thus 

sensitivity to the data is reduced in dense 

urban clusters.  

Conversely the FFNN achieved high raw 

accuracy but was volatile on Precision 

when used for the test data which was most 

likely due to the data sparsity for certain 

geographic pockets. The XGBoost 

framework was the best choice of trade- off 

as it gave superior Area Under the Curve 

(AUC) and F1-scores. This performance 

boost can be attributed to the model’s 

ability to efficiently manage the nuances 

and missing data in the tabular data and 

feeds these data to dense layers much more 

efficiently than dense layers of neural 

networks. Moreover, analysis of false 

positives showed the XGBoost model to 

make a clearer distribution of probability 

assignments compared to the SVM which 

often end up very close to the decision 

boundary and hence had slower confidence 

predictions. Consequently, these results 

support the argument that, at least in terms 

of the specific problem of hotspot detection 

in space, gradient boosted decision trees are 

currently the most reliable choice of 

architecture, providing the necessary level 

of robustness to enable deployment in a real 

traffic management system. 

Table 1: Comparative Model Performance 

for Hotspot Classification 

The empowerment results are conclusive 

that the XGBoost algorithm outperforms its 

counterparts with all the evaluation metrics 

which access these results and vectors with 

an accuracy of 0.901 and ROC-AUC with a 

value of 0.953. This great superiority 

validates the effectiveness of the gradient 

boosting framework in the modeling of the 

data. The outstanding performance of 

XGBoost validates the weightlessness of 

the gradient-boosting architecture for 

modeling the complex, non-linear 

interdependencies found within the fused 

dataset and, thus, it aligns with the current 

expectations on high-dimensional 

predictive modeling. 

An F1- score of 0.862 provides continuous 

and extra evidence of optimal adjustment, 

successfully minimizing the portion of non-

hotspots that were falsely identified, while 

at the same time maximizing the 

identification of true hot spots; an 

irreplaceable criterion for operational 

reliability. The solid performance of the 

Random Forest and FFNN models with a 

ROC- AUC score above 0.91 further 

support the use of sophisticated and 

nonlinear classifiers, as opposed to the 

discern Velly simplistic linear Logistic 

Regression model. 
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Figure 1: Comparative ROC Curves for 

Hotspot Classification Models 

Figure 1 visually supports the numerical 

results to prove that the XGBoost model 

had the largest area under the curve, and 

hence, its discriminative ability was the 

highest regardless of the classification 

thresholds.   

Analysis of Crash severity prediction.   

In the multi-class predicting exercise, the 

severity of accidents (Minor, Moderate, 

Severe) was forecasted. The Weighted F1- 

Score was chosen as the essential measure, 

which is used to evaluate the strong 

performance, and that will take into account 

the imbalance bias due to the relative rarity 

of severe crashes. 

Table 2: Performance for Multi-Class 

Crash Severity Prediction 

 

 

S 

No

. 

Mode

l   

Weighte

d 

F1-Score 

 1 Random Forest      0.33

3               

0.33

1 

2 SVM      0.34

7               

0.33

6 

3 XGBoost      0.30

7               

0.30

5 

4 FFNN 0.32

0               

0.30

6 

 

According to the binary classification 

findings, the XGBoost model demonstrated 

the best predictive accuracy on the crash 

severity with its accuracy of 0.821 and 

weighted F1 score of 0.814. This result 

highlights that the model is skillful in 

predicting high-impact, low-frequency 

severe crashes and thus provide some 

anticipation that can be used by the traffic 

management system to effectively 

distribute resources, including on-site 

medical services, which can then improve 

response times and reduce the number of 

fatalities.   

Importance of Features and 

Interpretability of a Model.   

The value added by individual features was 

investigated in terms of Gini Importance 

measure based on the best XGBoost 

classifier to provide the stakeholders with 

clear and practical intelligence.

 

Figure 2:  

 

Top 10 Feature Importance for Hotspot 

Prediction (XGBoost) 

FAs can be observed in Figure 2, the single 

strongest predictors, namely, the Historical 

Frequency, including the Historical 

Accident Count (3 months) and the Road 

Attributes (Intersection Presence and Road 

Type) were the most important. This 

supported the fact that the past trends of 

accidents are the best predictor of risk in the 

future. The environmental factors were not 

as dominant, but still had an important 

impact showing the importance of the 

multi-source data fusion in providing a 

higher predictive power than merely 

counting the historical data.   

Geospatial Validation   
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The third and the last stage of our work was 

the intensive validation of numerical work 

of the model within the framework of real 

geographical area. The hotspots identified 

by the XGBoost algorithm were visualised 

with help of Folium library, and compared 

to the ground truth clusters of DBSCAN. 

The Figure 3 geospatial representation is a 

good external validation, which proves the 

near-perfect spatial match of the high-risk 

areas represented by the model and the 

empirically measured hot spots of 

accidents. This finding confirms the high 

F1 -score of the model which transcends 

statistical artefact which can be articulated 

in the form of valid, practical geographical 

boundaries. Therefore, the findings can be 

more directly applied to the policy makers 

to make sure that there are specific changes 

to the road infrastructure and more effective 

allocation of law-enforcement resources.   

CONCLUSION   

The purpose of this investigation is to 

develop a uniform, proactive, and strong 

predictive system and predict the hotspots 

of accidents on the roads in urban milieus 

with the help of AI. The issues of road-

safety problems become complex as the 

size of the municipalities and the demand of 

mobility grows. The traditional reactive 

paradigms do not always suffice in averting 

catastrophes due to the above reasons; the 

honest appraisal and advanced intelligent 

systems that have the capability to foresee 

and avert risks before they change into 

accidents is the order of the day.. 
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