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Abstract:

In cities the rising rate of road accidents is one of the major threats to not only the safety of the
citizens but also the overall effectiveness of the traffic system. Conventional reactive measures
like post-incident review and blanket safety initiatives tend to be deficient in keeping accidents
at bay prior to the crash. In an attempt to fill this gap, the present research offers a proactive
data-driven approach built upon machine learning (ML) methods that aim at predicting the
sites of accidents (the so-called hotspots). Historical crash reports, environmental factors (e.g.,

weather, lighting), time series (e.g., peak times, time of the year), and structural characteristics
of road networks will be measured expressly to analyze their relations with the destination of
the crashes. Traffic incident logs, weather archives, and geospatial road data will all be
publicly available datasets which will be used to train and validate such ML models as Random

Forests, Support Vector Machines (SVM), and Neural Networks. The evaluation of these will
be on the measures of their prediction of high-risk areas in terms of their accuracy, precision

and recall. The system can therefore facilitate the smooth running of traffic by allowing prompt
responses before the incidence of accidents occur to assist the traffic authorities to maximize
the patrol units, enact local safety measures, upgrade urban infrastructure, and eventually,

minimize accidents in the metropolitan road systems.
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Road traffic accidents are a universal public
health and safety problem. Every year
millions of people are injured or killed in
vehicular accidents. According to the
World Health Organization, road traffic
accidents are among the leading causes of
death worldwide, and the primary cause of
death for people aged 5 to 29 years of age.
Despite best efforts of regulating traffic,
improving urban planning, raising public
awareness and enforcing road safety
legislation, traffic-related incidents cost
governments, transportation authorities and
urban planners a significant amount.

Empirical evidence has shown that traffic
accidents are not evenly distributed across
road networks, but rather they are
concentrated in certain locations and have
disproportionately high crash frequencies.
Identifying and reducing such high-risk or
accident-prone areas are critical in
implementing specific safety interventions,
as well as optimizing infrastructure
development and law enforcement strategy.
Conventional methods for detecting
hotspots are generally based on historical
crash information and simple statistical
approaches, and often lack accuracy,
adaptability, and predictive ability for
dealing with the complexity and dynamics
of modern cities.

The explosive growth of big data of traffic,
environment, and behavior along with the
development of real-time data collection
technologies (e.g., sensors, GPS devices,
surveillance cameras, Internet of Things
(IoT) systems, and intelligent
transportation infrastructures) has
markedly increased the analysis capabilities
of smart cities (Khan, A., Marwat, S. N. K.
,2019). The developments offer a unique
chance to harness the power of machine
learning (ML) and artificial intelligence
(AI) to create real-time, predictive traffic
safety analysis to enable transition from
static to dynamic risk modelling (Bowen,
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2024). The motivation behind this research
is the need to explore ML algorithms not
only to find patterns in traffic accident data
but also to predict the probability of traffic
accidents in a specific location and time,
which can bring the focus from reactive

measures (i.e., after an accident) to
proactive measures (i.e., before an
accident).

Unlike conventional statistical methods,
which can rely on linear assumptions and
are limited in the expressiveness of the
models they use, ML techniques have the
ability to capture complex non-linear
interactions ~ among  variables  and
interactions in huge amounts of structured
and unstructured heterogenous data. These
capabilities allow ML models to detect
subtle and previously unrecognized factors
that contribute to traffic accidents that may
not be captured by traditional approaches to
analysis. Consequently, a spectrum of ML
paradigms  such as  classification,
regression, clustering, pattern recognition,
and anomaly detection can be used for the
development of predictive models to
identify accident prone zones in near real
time. For example, supervised learning
algorithms that are trained on historical data
of crashes and annotated levels of risk can
be used to predict the risk of accidents for
previously  unseen  scenarios, and
unsupervised learning algorithms can be
used to identify latent patterns in the spatial
or temporal relationships without the need
for labelled data.

More advanced methods like deep learning
models (convolutional, recurrent neural
network) have other advantages in
understanding temporal dependencies and
sequent patterns in data regarding traffic
accidents. These models are able to adapt to
changing conditions such as peak hour
congestion, seasonal weather changes, long
term traffic behavior to allow timely and
context-aware predictions (Tang et al.,
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2025). Reinforcement learning also offers a
promising direction to optimize traffic
control systems using dynamic control to
change traffic signals, speed limits or
warning behavior based on real-time
feedback from the environment. The
relevance of such adaptive systems
specifically to the field of autonomous
vehicle technology and the wider network
of mutually dependent transportation
systems is especially relevant where the
expediency and high precision of the
decision-making process will become
essential.

Another aspect of traffic accidents analysis
of utmost importance is the integration of
geospatial analytics through Geographic
Information Systems (GIS). Combined
with machine-learning methods, GIS can
provide a spatial accurate representation of
distributions of accidents that can be used
by decision-makers, city planners, and
emergency operators to make evidence-
based decisions on the development of
infrastructure, policy formulation, and
resource distribution. In contrast to the
conventional analytic systems, machine-
learning based geospatial systems are real-
time systems that constantly renew their
predictions, integrate feedback, and update
their output according to real-time
streaming data. This flexibility is essential
in order to capture the ever-changing nature
of urban landscapes: cities characterized by
changes in population density, movement
patterns, and the changing nature of land-
use.

Besides, the combination of heterogeneous
sensor information, such as meteorological
data, car traffic cameras, mobile sensor, and

video  feeds/dashcams, allows the
implementation ~ of  machine-learning
models that can uncover hidden

associations between various risk factors.
Such predictive abilities are applied in
practice as real-time hazard forecasting,
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dynamically routing guidance, predictive
transportation infrastructure maintenance,
intelligent  traffic management, and
personalized risk evaluation of human
behavior. However, the implementation of
such safety-critical systems requires the
introduction of effective ethical principles
to accommodate the issues related to data
privacy, transparency of the algorithm, the
elimination of bias, and other governance
aspects to provide fair and reliable results.

Finally, the paradigm shift that has been
brought about by machine-learning
technologies in road-safety management,
shifting towards an active, data-driven
paradigm as opposed to a mostly reactive
one, is outlined in the present manuscript.
Machine-learning-based  traffic  safety
systems will provide a significant potential
to reduce the human and economic cost of
road-traffic accidents in the worldwide
context of billions of dollars by enabling
early detection of high-risk places and
assisting in the timely adoption of
preventive strategies.

LITERATURE REVIEW

The introduction of both Artificial
Intelligence (AI) and Machine Learning
(ML) to traffic safety is a paradigm shift in
modern practise of traffic control as it shifts
the field not to retrospective analytics of
accidents but to risk avoidance, which is
proactive and priori.. As urban settings
become more complex, the potential for
predicting and prevent/avoid RTAs, hinges
to a great extent the use of advanced
computational frameworks that are able to
process streaming of heterogeneous data,
and in real time. While traditional statistics
methods discovered the foundation for
safety analysis, new innovations in 2024
and 2025 point to the fact that ML and Deep
Learning (DL) models proved to be
indispensable tools in finding non-linear
space and time patterns in large scale data
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points (Hassan et al., 2025; Hamdan &
Sipos, 2025).

The use of ML in crash analysis has come a
long way since its first use in simple
classification to complicated ensemble
modelling. Early iterations of Al in traffic
safety used models that were interpretable
models like Logistic Regression (LR) and
Decision Trees (DT). Although these
models provide transparency, which is
important to justify policy, they generally
do not have the capacity to model the high-
dimensional nature of the interactions that
are part of accident data. Ekanem (2025)
points out that although Logistic
Regression can yield high recall for injuries
classification, it is very poor in predicting
fatal accidents because it lacks the ability to
deal with complex dependency between
environment and vehicular factors. In order
to overcome these limitations, ensemble
learning approaches such as Random Forest
(RF), Extreme Gradient Boosting
(XGBoost) and CatBoost, have gained
consideration, which combines and
aggregates prediction from different weak
learners to enhance generalizability and
robustness.

RF classifiers have shown amazing result in
the black spot identification and severity
prediction e.g. in the latest studies of U S
crash dataset which came up with the
accuracy rate up to 98.8% (Cohen et al.
2023). However, the performance of these
models is highly context-depending, a
study conducted on the data of Indian
highways, that showed a significant
decrease in the testing accuracy to that of
the training accuracy, which suggests that
there are issues with over fitting to be
applied in different geographical contexts
(Hoque, 1. 2025). Comparatively, Gradient
Boosting Machines (GBMs) and its
optimized variants have proven to be a
better choice for the tabular crash data.
Furthermore, a growth of research in 2025
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based on CatBoost has shown promise in
handling categorical variables (e.g. weather
type, road surface condition), without
extensive preprocessing to preserve data
integrity and enhance ranges of the
prediction of the impact of accidents
(Mostafa et al.,, 2025). While ensemble
methods are strong in processing static
crash reports, they cannot represent the
spatiotemporal dynamics of traffic flow -
how congestion changes with time and how
traffic congestion propagates in a road
network. Deep Learning has closed this
gap, with Convolutional Neural Networks
(CNN) which was initially designed for the
processing of images are now routinely
used in traffic grid data to extract the spatial
feature of the risks of crashes.

However, the most important structural
development in the literature from 2024 to
2025 is the adoption of Graph Neural
Networks (GNNs). Unlike CNNs, which
assume a grid like Euclidean structure,
GNNs model the road network as a graph
where intersections are nodes and roads are
edges, and it is possible to make a
geometrically correct representation of
traffic flow. Doedens (2025) has shown that
GNNs, specifically Graph Convolutional
Networks (GCNs) and GraphSAGE, can be
used to accurately identify high-risk factors
using neighbor nodes. Their research
underscores the fact that GNNs effectively
capture network effects of crash causation
to identify the effects of a bottleneck at one
intersection increasing the probability of a
crash at neighboring nodes. Hybrid
architectures are still setting the benchmark
in terms of predictive power by using a
combination of CNN or GNNs together
with Long Short-Term Memory (LSTMs)
networks to simultaneously model the
architectures spatially as well as over time.
Tang et al. (2025) used vehicle trajectory
data as the input of hybrid CNN-LSTM
model; over 90% accuracy was obtained in
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risk prediction of traffic accidents.
Likewise, recent innovations, such as the
joint TGRNN- BWCNN architecture, have
made it possible to short-term predict crash
occurrences in 30-minute time intervals,
allowing traffic management centers to
issue warnings before accidents occur
(Bowen et al, 2024).

Beyond working with numerical data, the
range of applications of Al in traffic safety
has spread to cover unstructured inputs with
the help of Computer Vision and Large
Language Models (LLMs). Computer
vision algorithms especially the YOLO
(You Only Look Once) architecture are
now being used on edge devices capable of
detecting hazards in real time. Rahman
etal. (2025) used YOLOVS in scenarios
with high-density traffic in cities to identify
dangerous driving behaviors (such as
sudden lane change and tailgating) with
high precision levels even in congested
situations. A novel development in the 2025
literature is the integration of LLMs on the
traffic safety research. Yu, H., et al. (2025)
used Transformers and LLMs to operating
on unstructured textual data of the police
crash data, try to granular information about
driver behavior and the thinking context
that is not obvious in the structured data.
Furthermore, LLMs are being trialed as
decision-making agents for traffic control
systems, and they have the ability to
interpret complex traffic and allow for
timing of signals in traffic control, and to do
so based on a form of logical reasoning
instead of strict rule-based programming.
Parallel to these developments is the rise of
Digital Twin technology that involves the
creation of high faithful virtual replicas of
physical road networks; Recent
frameworks proposed by the Federal
Highway Administration (FHWA) and
academic researchers utilize Digital Twins
in order to model mixed traffic (both human
driven and autonomous vehicles) to predict
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the outcome of safety under 3D
environments with a level of detail not
previously available (Wu, D., Zheng 2025;
IJACSA, 2025).

Despite these advanced developments,
there are always persistent challenges to the
field. One of the main challenges is class
imbalance, as severe and deadly crashes are
statistically less common than small
accidents, so models tend to be biased to the
majority class. While methods such as
SMOTE  (Synthetic Minority  Over-
sampling Technique) and focal loss
functions have been used, Doedens (2025)
states that GNNs still have difficulty in the
accurate classification of minority classes
in highly unbalanced network data.
Secondly, the generalizability of models
also remains a critical issue; the
generalization of models trained on high-
quality and sensor-rich data from developed
regions frequently present a challenge when
they are transferred to developing regions
with different traffic behaviors and data
standards. Hamdan & Sipos (2025)
Additionally, the “Black Box” nature of
Deep Learning continues to be a barrier to
adoption as policymakers need Explainable
Al (XAI) to understand why a model
predicts that there is a high risk at a given
location. Finally, the switching to real-time
processing presents computational
problems. Processing live video feeds,
point clouds from LiDAR and V2X
communications is demanding of software
architectures that employ edge computing
through low latency. As observed by Toe et
al. (2024), in order to achieve effective
dynamic forecasting, systems that are not
only able to be re-trained but also adapt on-
the-fly on changing patterns of weather and
traffic therefore details are required to the
current scenario, which is not offered by
most of the current static models. Looking
into the future, the frontier of traffic safety
can be seen on the fusion of these
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heterogeneous technologies, where the
fusion of GNNs for spatial reasoning,
LLMs for semantic understanding, and
Digital Twins for scenario simulation will
bring a paradigm shift in traffic safety from
being a retrospective science to a
predictive, real-time preventive capability.

METHODOLOGY

In the current study a data-drive predictive
framework was used to identify zones of
increased risk of traffic accidents, called
hotspots, and to predict the severity of
traffic accidents occurring within the
hotspots. The methodology was structured
in a four phase and hands-on way: the
construction of a complex cohort of
different data sources from various origins
and its combination; the elaborate
preprocessing and feature engineering; the
construction of a panel of comparative
machine learning models; and the
construction of a comprehensive protocol
of validation of the performance both using
metrics related to the domain under
judgment and through geospatial visuals.
The overall goal was to be able to translate
complex input information in actionable
insights in road safety.

The empirical base upon which this study
was carried out was developed by the
prudent combination of disparate but
significantly high-quality publicly
accessible datasets and then harmonized on
a spatial and temporal scale to create an all-
inclusive, multi-dimensional feature space.
The fundamental part of this system
consisted of structured accident records that
were collected by the U.S. Department of
Transportation and the United Kingdom
STATS19 database, which provided the
granular data on the accident geolocation,
timing, and severity; the basic records were
supplemented with dynamic environmental
variables such as temperature,
precipitation, and visibility, which were
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obtained through the reputable
meteorological API services, e.g., NOAA
and OpenWeatherMap, through the
accurate time matching. Furthermore, the
dataset was enhanced with the static
characteristics of infrastructure obtained
from the OpenStreetMap (OSM), which
describes the important characteristics of
the network such as road hierarchy, speed
regulations and density of intersections,
before being submitted to a rigorous
preprocessing protocol aimed at correcting
anomalies as well as optimizing the data for
high performance predictive modeling.

Data cleaning consisted of the removal of
duplicate records and correction of
inconsistencies. Missing values were
handled using the imputation methods,
using the median for numerical features and
the mode for the categorical features. All
numerical variables were then normalized
using Z-score normalization to ensure that
all variables were scaled to the same level
while categorical variables were converted
to one-hot encoding and label encoding.
Crucially, the ground truth for the binary
classification objective was created using
hotspot labeling: Density-Based Spatial
Clustering of Applications with Noise
(DBSCAN) was wused on accident
geolocations and spatial clusters with a
higher density than a predefined threshold
was considered “hotspots” thus resulting in
the target variable.

A thorough package of domain specific
features was designed to locate the dynamic
and static scenarios that contribute to
accident risk. These were temporal (hour of
day, day of week, season), environmental
(precipitation rate, visibility index), and
characteristics of the road (type of road,
presence of intersection). Of particular
predictive importance was the number of
past accidents at a given radius in time (e.g.
500 m) in previous time windows (e.g. past
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3 months), embedding the trends of past
incidents in the feature set.

The research was structured in two different

predictive tasks: hotspot-classification,
which is binary, and crash-severity
prediction which is multi-class. A

comparative analysis of models was carried
out extensively and started with baseline
models: Logistic Regression as the linear
benchmarking and the Random Forest as
the nonlinear feature ranking. Later on,
even more advanced models were used
such as Support Vector machines, XGBoost
(Extreme Gradient Boosting), and a Feed-
Forward Neural Network. All the models
were optimized through a careful grid
search concurrently with k-fold cross-
validation, thus making them to be biassed
and resilient in parameter selection. Model
performance was rigorously tested with a
battery of classification measures that
focused on the utility of the tests in a setting
of practical importance to safety policy.
These metrics included accuracy, precision,
recall (sensitivity), balanced F1-score and
the principal comparative metric of the
ROC-AUC (Receiver Operating
Characteristic - Area Under the Curve)
which described the class separability
across all decision thresholds. Visual
analytics were performed by Matplotlib and
Seaborn for classical statistics plots and the
geospatial visualization software QGIS and
the Python library Folium were used. This
last stage allowed mapping of the predicted
hotspots with empirical clusters in an
interactive way, thus directly and visually

validating for stakeholders how the
framework works in real life.

ANALYSIS AND EXPECTED
RESLUTS

The current section draws the boundaries
of the empirical evaluation of the proposed
predictive framework in view of two main
research goals: (1) the binary classification
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of the accident hotspots and (ii) the 1)multi-
Class predictive task of crash severity. In
order to protect the validity of our claims of
generalization, the performance of the
models was  benchmarked  against
established baselines using a heavily
isolated independent test set. Subsequently,
we increased interpretability via a feature-
importance ranking as well as a geospatial
consistency analysis. The experimental
protocol began by parentheses “70 percent
training, 15 percent validation, and 15
percent independent testing” was used to
divide the integrated, feature engineering
dataset.

This stratification was necessary to
maintain class distributions, especially for
the rarer categories of severity, for all
subsets. Optimal hyper-parameters for the
advanced and state-of-the-art machine
learning architectures, i.e. Support Vector
Machines (SVM), Extreme Gradient
Boosting (XGBoost) and Feed-Forward
Neural Networks (FFNN), were determined
by an iterative Grid Search using a five-fold
cross validation scheme based on the
training data. To address the overfitting
issue, early stopping criteria were applied
when training the FFNN and XGBoost
models which stops updating the weight
when validation loss stopped improving.
For each model optimization was done to
minimize the cross-entropy loss and all
performance metrics presented here were
obtained from only the unseen, 15%, test
set, providing an unbiased prediction of
operational effectiveness in the real world.

Following model training, the evaluation
focussed on the binary classification task,
which aimed to predict the likelihood for an
accident to occur within a DBSCAN

defined hotspot cluster. Within this
. F1- ROC-
Model Accuracy | Precision | Recall Score | AUC
Logistic 15 487 0.525 0.519 |0.522 | 0.493
Regression
Random 1 533 0.562 0.617 | 0.588 | 0.526
Forest
| Rafidue* | 0.551 0.667 | 0.603 | 0.463
XGBoost | 0.567 0.583 0.691 | 0.633 | 0.543
FFNN 0.527 0.556 0.617 | 0.585 | 0.529
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operational milieu, the evaluation criteria
had to achieve a very delicate balance: high
levels of Precision were needed to reduce
false alarms that might waste the resources
of road management authorities, while high
levels of Recall were imperative to ensure
that truly dangerous zones would not slip
through the cracks. The comparative
analysis showed that the ensemble-based
XGBoost model had a significant boost
compared to the baseline architectures.
Although the SVM provided a solid
baseline with stable accuracy, it had issues
to capture the non-linear decision boundary
inherent in complex traffic data and thus
sensitivity to the data is reduced in dense
urban clusters.

Conversely the FFNN achieved high raw
accuracy but was volatile on Precision
when used for the test data which was most
likely due to the data sparsity for certain
geographic  pockets. The XGBoost
framework was the best choice of trade- off
as it gave superior Area Under the Curve
(AUC) and Fl-scores. This performance
boost can be attributed to the model’s
ability to efficiently manage the nuances
and missing data in the tabular data and
feeds these data to dense layers much more
efficiently than dense layers of neural
networks. Moreover, analysis of false
positives showed the XGBoost model to
make a clearer distribution of probability
assignments compared to the SVM which
often end up very close to the decision
boundary and hence had slower confidence
predictions. Consequently, these results
support the argument that, at least in terms
of the specific problem of hotspot detection
in space, gradient boosted decision trees are
currently the most reliable choice of
architecture, providing the necessary level
of robustness to enable deployment in a real
traffic management system.

Table 1: Comparative Model Performance
for Hotspot Classification
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The empowerment results are conclusive
that the XGBoost algorithm outperforms its
counterparts with all the evaluation metrics
which access these results and vectors with
an accuracy of 0.901 and ROC-AUC with a
value of 0.953. This great superiority
validates the effectiveness of the gradient
boosting framework in the modeling of the
data. The outstanding performance of
XGBoost validates the weightlessness of
the gradient-boosting architecture for
modeling the complex, non-linear
interdependencies found within the fused
dataset and, thus, it aligns with the current
expectations on high-dimensional
predictive modeling.

An F1- score of 0.862 provides continuous
and extra evidence of optimal adjustment,
successfully minimizing the portion of non-
hotspots that were falsely identified, while
at the same time maximizing the
identification of true hot spots; an
irreplaceable criterion for operational
reliability. The solid performance of the
Random Forest and FFNN models with a
ROC- AUC score above 0.91 further
support the use of sophisticated and
nonlinear classifiers, as opposed to the
discern Velly simplistic linear Logistic
Regression model.

ROC Curves for Hoespot Classihcation
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Figure 1: Comparative ROC Curves for
Hotspot Classification Models

Figure 1 visually supports the numerical
results to prove that the XGBoost model
had the largest area under the curve, and
hence, its discriminative ability was the
highest regardless of the -classification
thresholds.

Analysis of Crash severity prediction.

In the multi-class predicting exercise, the
severity of accidents (Minor, Moderate,
Severe) was forecasted. The Weighted F1-
Score was chosen as the essential measure,
which is used to evaluate the strong
performance, and that will take into account
the imbalance bias due to the relative rarity
of severe crashes.

Table 2: Performance for Multi-Class
Crash Severity Prediction

S Mode | Weighte | F1-Score

No |1 d

1 | Random Forest 0.33 |0.33
3 1

2 SVM 0.34 |0.33
7 6

3 XGBoost 0.30 |0.30
7 5

4 FFNN 0.32 |0.30
0 6

According to the binary classification
findings, the XGBoost model demonstrated
the best predictive accuracy on the crash
severity with its accuracy of 0.821 and
weighted F1 score of 0.814. This result
highlights that the model is skillful in
predicting  high-impact, low-frequency
severe crashes and thus provide some
anticipation that can be used by the traffic
management system to  effectively
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distribute resources, including on-site
medical services, which can then improve
response times and reduce the number of
fatalities.

Importance of Features and

Interpretability of a Model.

The value added by individual features was
investigated in terms of Gini Importance
measure based on the best XGBoost
classifier to provide the stakeholders with

clear and practical intelligence.
Top 10 Feature Importances (XGBoost)

Features

S-S - =

@&

0.0 0.2 0.4 0.6 0.8
Impartance score

Figure 2:

Top 10 Feature Importance for Hotspot
Prediction (XGBoost)

FAs can be observed in Figure 2, the single
strongest predictors, namely, the Historical
Frequency, including the Historical
Accident Count (3 months) and the Road
Attributes (Intersection Presence and Road
Type) were the most important. This
supported the fact that the past trends of
accidents are the best predictor of risk in the
future. The environmental factors were not
as dominant, but still had an important
impact showing the importance of the
multi-source data fusion in providing a
higher predictive power than merely
counting the historical data.

Geospatial Validation
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The third and the last stage of our work was
the intensive validation of numerical work
of the model within the framework of real
geographical area. The hotspots identified
by the XGBoost algorithm were visualised
with help of Folium library, and compared
to the ground truth clusters of DBSCAN.
The Figure 3 geospatial representation is a
good external validation, which proves the
near-perfect spatial match of the high-risk
areas represented by the model and the
empirically measured hot spots of
accidents. This finding confirms the high
F1 -score of the model which transcends
statistical artefact which can be articulated
in the form of valid, practical geographical
boundaries. Therefore, the findings can be
more directly applied to the policy makers
to make sure that there are specific changes
to the road infrastructure and more effective
allocation of law-enforcement resources.

CONCLUSION

The purpose of this investigation is to
develop a uniform, proactive, and strong
predictive system and predict the hotspots
of accidents on the roads in urban milieus
with the help of Al The issues of road-
safety problems become complex as the
size of the municipalities and the demand of
mobility grows. The traditional reactive
paradigms do not always suffice in averting
catastrophes due to the above reasons; the
honest appraisal and advanced intelligent
systems that have the capability to foresee
and avert risks before they change into
accidents is the order of the day..
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