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Abstract:

Tomato is a global important horticultural crop whose yield and quality are severely affected by
bacterial, fungal and viral pathogens that incite foliar diseases. As such, early and accurate diagnosis
of such ills is critical for crop management. Traditional methods for diagnosis fell to manual inspection
and laboratory analysis are burdensome and time-consuming and impractical in large-scale and
resource-constrained agricultural environments. Although recent efforts in deep learning and computer
vision have led to automated diagnosis of plant disease, a lot of current approaches are based on
laboratory-curated datasets and lack robustness, interpretability or deploy ability under real state
conditions. This manuscript proposes a complete framework based on deep learning for the early
detection and classification of tomato leaf diseases which simultaneously addresses the problem of
accuracy, generalization, explainability, and deployment feasibility. The system exploits transfer
learning using state-of-the-art convolutional neural network architectures such as EfficientNetB4,
ResNet50, InceptionV3 and MobileNetV3 refined with a combination of laboratory and acquired image
datasets collected in field. To counter-act the class imbalance and environmental variability we use
plenty of data augmentation, normalization and regularization protocols. The models are evaluated
based on a set of stringent performance results such as accuracy, precision, recall, F1-score and AUC.
Experimental results show that our model which is effectively based on the EfficientNetB4 model
outperforms the competing models with an accuracy of classification ranging from 96 percent to 99
percent, an eurointiention range of almost 0.99, while at the same time ensuring a robust generalization
of the results under field-like conditions. Lightweight architectures like
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MobileNetV3 also help in enabling real-time inference on edge devices making the system practical. In
sum, the proposed framework presents a solution that is scalable and interpretable and which can be
easily deployed to serve as a solution for precision agriculture in favor of improved disease

management, crop resilience fortification and sustainable tomato production.
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INTRODUCTION:

Tomato (Solanum Lycopersicum) stands at
a towering position in the horticultural
staple in terms of the extent of its
cultivation and its economic value. This
importance is highlighted by the fact that it
plays a vital role in food security of the
world and sustainability of agricultural
systems. However, the yield and quality of
tomatoes is often reduced by the variety of
foliar pathogens including bacteria, fungi,
and viruses that may severely reduce yield
and quality when undetected and untreated
at their early stages. The traditional
diagnostic modalities including the tedious
visual evaluation of the experienced
professionals and the time and resource
consuming laboratory-based assay are
bound by nature by their manual, time
consuming nature and subjectivity. These
limitations are exacerbated in large-scale or
limited resource farming practices and
therefore act as a catalyst for the shift
towards automated and data-driven
approaches to the early identification of
disease in precision agriculture.

With the introduction of artificial
intelligence specifically through deep
convolutional neural networks (CNNs) and
computer vision schemes, one can now
create an autonomous system that can
identify plant pathology by leaf imagery

70

ournalofemergingtechnologyanddigitaltransformation.com

with an impressive degree of accuracy. Due
to their powerful feature extraction
features, CNNs have come to be the
foundation of this field. The effectiveness
of CNN-based classifiers and detectors to
identify tomato leaf diseases has been
empirically confirmed in several studies, as
simplified, real-time object
detection systems, such as those that use the
YOLO framework. These models are
shown to be promising to be used on edge
devices and mobile platforms and,
consequently, provide fast inference and
reduced computational costs without
compromising competitive accuracy.

well as

Image classification models have stayed as
an essential part of automated plant
pathology diagnostics concurrent with the
creation of the object detection
frameworks. Architectures modelled after
EfficientNet, ResNet and Inception variants
have been adapted for
classification of tomato leaf disease,
usually taking advantage of the transfer

successfully

learning techniques to reduce the data
requirements. Moreover, the incorporation
of explainable artificial intelligence (XAI)
modalities, such as heatmap visualizations,
to promote model interpretability has been
started to build trust in models and
stakeholders, especially agronomists and
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farmers (who rely on actionable and
transparent  decision-support  systems).
Regardless of these impressive
achievements, most of the available studies
are based on carefully maintained
laboratory collections, including Plant
Village, which are all measured at the same
artificial light and background conditions.
Even though they are useful in driving the
model development, these data sets simply
do not capture the range of real-world
variability, and therefore limit the
generalization ability of the models
derived. Models that are trained on realistic
field collections (in which images are
competing with complicated backgrounds,
changing illumination, occlusions,
changing leaf orientations, and sensor
noise) usually see a strong degradation in
performance. As a result, there is a growing
argument on the need to have field-based
collections, such as Planetdom, and
assessment mechanisms that are more
reflective of actual deployment conditions.

Solving the two issues of domain shift and
lack of diversity in data, new scholarship
has amused more robust and articulate
architectures. It is noteworthy that the high-
end CNN variants that utilize the method of
the subspace learning of tensors and
compressing of features are designed to
increase the discriminative power and
reduce redundancy. At the same time,
vision models based on transformers have
been on the rise due to their ability to
generate local and global contextual
information through attention mechanisms.
According to empirical reports, these
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models outperform traditional CNNs
especially in complex real-world situations.
The combination of large language models
(LLMs) with XAl techniques further opens
up possibilities of closing the gulf between
model against pragmatic agronomic
recommendations. One of the challenges
faced continuously in tomato disease
detection involves the lack of data and
disparity in classes, in particular,
uncommon pathologies. The acquisition
and decorrelation of large, field-scale
datasets is an expensive and tedious task. In
order to mitigate this limitation, a number
of few-shot and data-efficient learning
approaches have been suggested, and it
allows models to generalize well using a
small amount of labelled data. Domain-
adapted and ensemble-based frameworks
have also shown promising results in
reducing the requirement for voluminous
annotated data-sets while maintaining
strong performance measures.

Other than the accuracy of the algorithm,
issues of pragmatic deployment have risen
in significance. Some studies have shown
that a model of disease detection can be
implemented on the edge devices and IoT-
enabled systems, including ground robots
and embedded systems, with high viability.
Nonetheless, limitations related to
inference speed, memory consumption,
energy consumption and  real-time
operability remain very real limitations to
large-scale adoption. Finding a good
balance between accuracy, efficiency,
explainability and deploy ability is an
unanswered research question.
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To conclude, the existing body of literature
outlines multiple groundbreaking trends in
the field of tomato leaf disease diagnostics:
the shift towards fixed image classification
to detection and localization, the emergence
of transformers-based and hybrid systems,
the important need to have variety in data
sets and domain adaptation, a more
concentrated interest in explainability and
user trust, and an increased interest in real-
world and edge deployment. However, the
majority of currently dominant methods
deal with these issues in segregation, by
maximizing speed, or
interpretability individually, but not in a
unified framework, which is
appropriate to real-world agricultural
milieus.

accuracy,

well-

The gaps of these, the current work will
offer a combined machine-learning system
to identify and classify tomato leaf diseases
early with concurrent considerations of
accuracy, robustness, explainability and
deployment capabilities. Based on new
developments in  object detection,
transformer-based  learning, = domain
adaptation and data-efficient training, this
is to develop a system that will be reliable
under lab, field, and edge environments. By
incorporating the multi-source images and
the addition of interpretable decision-
making processes, this research aims at
providing a workable, clear, and scalable
answer to the accuracy of farming,
therefore, adding value to the resilience of
crops and long-term tomato harvests.

Literature Review

Tomato leaf disease diagnosis has recently
attracted a large amount of research
attention, driven by the development of
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deep learning, computer vision, and
precision agriculture. Traditional ways of
diagnosing such diseases-like manual
visual inspection and laboratory testing are
heavy on manpower, time-consuming and
not always feasible for large-scale
cultivation. Consequently, there have been
various  contemporary  studies  on
automated, Al-based methods that make
use of image data, sensor networks and
machine learning models to improve the
speed, accuracy and scale of disease
detection.

One of the seminal directions of this sort
uses convolutional neural networks (CNNs)
for classification of images of tomato
leaves as healthy or diseased. For example,
Al-Bakhrani and Ali (2024) develop a
model for detecting diseased tomato leaves
based on deep learning, which is based on a
Yolo-based model architecture and
provides high precision and real-time
performance. Their study highlights the
real-world use of lightweight detectors for
objects in detecting disease under different
conditions. Likewise, Kouki, Kallel and
Alsuwaylimi (2024) used the YOLOvVS
algorithm to identify tomato diseases
through 1its fast inference speed and
efficient architecture to achieve a balance
between accuracy and computational
requirements. Their reported performance
gives an idea of the possibility to use these
models in a real-world or edge device
environment.

At the same time with object detection
frameworks, image classification still stays
a cornerstone for disease recognition.
Debnath et al. (2023) designed a
smartphone-based system for detecting the
disease by using the EfficientNetV2B2
architecture, that enables farmers to take
photographs of leaves and receive real-time
diagnostics. Importantly, the authors also
included some explainable Al (XAI)
mechanisms, and gave visual justifications,
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such as heatmaps, for model predictions,
which would increase trustworthiness and
interpretability of the model for non-
technical end users.

While such controlled datasets as Plant
Village have played a foundational role in
developing models, concern has been raised
about their limitations to represent real-
world variability. Jelali (2024) in a
thorough review of deep learning networks
for detecting tomato disease describes an
important limitation, that models trained on
datasets acquired under laboratory
conditions are unable to generalize under
field conditions because of differences in
background, lighting and angle, and
occlusion of leaves. The review calls for
greater utilization of field-based datasets
such as PlantDoc dataset and evaluation
protocols representing scenarios that reflect
in situ scenarios.

In response to the challenge of differences
in domains, a number of studies have
argued for stronger architectures. Ouamane
et al (2024) proposed a CNN based
algorithm with tensor subspace learning
based on Higher Order Whitened Singular
Value Decomposition (HOWSVD- MD).
This approach is intended to reduce
redundancy of features and increase
discrimination between the categories of
diseases, and has very high accuracy on the
Plant Village and Taiwan datasets. Their
results underscore the importance of having
compact, discriminative representations for
plant disease classification while notably in
the face of domain shifts. Apart from the
traditional CNNSs, the transformer-based
methods have recently proven to be highly
promising. More recently, an operational
framework was suggested by Karimanzira
(2025) which has a vision-transformer
(ViT) model augmented with cascaded
group attention (CGA) and a variation of
the loss function (Focaler-CloU) to more
precisely incorporate local and global
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patterns of tomato leaf images. The model
was reported to have an accuracy of ninety-
six and a half percent with a high precision
and recall and Fl-scores, showing that
attention-based architectures can
outperform the classical CNN, especially in
the real world. Moreover, the paper
combined explainable Al in order to bring
interpretability and used a large language
model (LLM) to produce context-aware
recommendations for farmers, to bridge the
gap between model predictions and
agronomic advice for action.

Another major challenge in the detection of
tomato disease is dataset size, imbalance
and the difficulty of gathering labelled data
for rare diseases. To address the limitation
of data, frameworks for few-shot learning
have been suggested recently. For example,
Ahmed et al. (2025) introduced DExNet,
which is a domain-adapted expert network,
which combines the observation from
multiple pretrained CNNs (so-called
"critics") and fuses the feature embeddings
for leaf disease classification. Evaluated on
the PlantVillage tomato dataset, DExNet
was able to achieve high accuracy results
even with limited amounts of samples per

class  (5-15) which  shows  high
generalizability = and  reduces  the
dependency on large-scale labelled
datasets.

The pragmatic use of such models has also
been illustrated by IoT integrated systems.
For example, Farooq et al. (2025) created a
ground robot with CNN classifier and [oT
equipment for navigating in tomato fields
and on-site image acquisition and disease
detection. In their system over 20,000
images were collected from ten disease
categories and an overall accuracy of about
83% was obtained when running the model
on low-power edge devices (such as
Raspberry Pi 4) which shows the feasibility
of using autonomous field monitoring in the
real world. Beyond the classification, some
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of the studies put a special focus on the
detection and localization of the disease
symptoms in leaf images. A very recent
study used Inception v4 CNN and YOLOvVS
for simultaneous classification and object
detection (i.e., localizing diseased spots on
leaves) thus resulting in classification and
detection accuracy of 96 and 86 per cent
mAP@0.5 (Springer, 2025). This hybrid
approach provides a powerful tool for
precision agriculture allowing to perform
initial disease detection, as well as targeted
treatment (at the lesion level).

Another promising direction is that of
transfer learning. Alkhaled and Mayhoub
(2023) used a set of pre-trained models
(Inception v3 and Inception-ResNet v2) for
the diagnosis of tomato leaf diseases and
achieved good performance even with
relatively small datasets. Their work
reflects the importance of using generally
large size pre-trained vision models for the
bootstrap of detecting diseases in
agricultural settings.

Evaluations of various deep-learning
architectures have also been reported by
comparing different models like ResNet,
VGG, MobileNet and plain CNNs. In a
comparative study, Mamatha and Raju
(2025) demonstrated that ResNet50 was
superior to VGG16, MobileNetV2 and a
standard CNN model for the classification
of seven classes of tomato leaf images.
These comparative studies are used to
identify the trade-off between the model
complexity, accuracy and deployment
feasibility in  resource  constrained
environment.

Complementing research on the accuracy,
there is an increasing amount of work on the
efficiency and real-time capability of doing
modeling. a customized deep neural
network model was created to classify ten
classes of diseases from more than 18,000
images obtained for training (Umar et
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al.,2025). In this paper a customized deep
neural network (DNN) model has been
developed to classify ten classes of diseases
from over 18,000 trained images with an
accuracy of above 99 per cent with less
parameters and lower computational fees as
compared to standard CNN architectures
(e.g. VGG, ResNet, Dense Net). This line
of work is important to enable deployment
to mobile devices or edge computing
platforms, or other Agricultural hardware
with low resources.

Despite these advances, there are
significant challenges, as pointed out by the
literature. Models trained on laboratory
datasets tend to hold when put in the field
due to domain shift; differences in
background, lighting and the orientation of
the leaves to the camera results in a lack of
robustness for models (Jelali, 2024; Al-
Bakhrani & Ali, 2024). In addition, the
imbalance and lack of datasets for some
rare tomato diseases makes it difficult to
create models that can be well generalized
across all  categories of  disease
(Ahmed et al., 2025).  Explainability  is
never going away Although tools of
'explainable AI' (XAI) have been used-such
as Grad-CAM or SHAP-there is still a gap
in terms of transparent and context-aware
decision supporting systems for farmers
(Debnath et al., 2023; Karimanzira, 2025).

Furthermore, there are still hardware
limitations associated with real-time
deployment,  which,  while  some

deployment studies have been carried out
on edge devices using machine learning
models, the inference speed, memory
consumption, and energy consumption
remain a major limitation (Farooq et al.,
2025; Umar et al.,2025).

The review of state-of-the-art literature thus
presents some of the following main trends:
the transition from  static = image
classification to detection and localization;
the development of transformer-based and
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hybrid models; the crucial importance of
dataset diversity and domain adaptation; the
importance of explainability; and an
increasing importance of deploying the
models in real agricultural environments.
However, in the literature, there is no single
framework that addresses all these aspects
at the same time. Many studies have
optimized for accuracy, speed, or
explainability but not all three in a unified
system that is ready for the field.

In light of this, the proposed system for
early detection and classification of
diseases of tomato leaf using machine
learning is aimed at addressing these gaps.
Our framework will build on existing
advancements such as YOLOvS8 based
detection (Al-Bakhrani & Ali (2024),
Noufou (2024), efficient mobile friendly

classification Debnath et al. (2023),
Transformers architectures with field
generalizability =~ Karimanzira  (2025),

Tensor subspace methods Ouamane et al.
(2024), Few shots learning Ahmed et al.
(2025). Our system will introduce novel
integration, domain adaptation and
explanation strategies. We are hoping to use
multi-source image data (lab, field, edge)
using data efficient learning. Offering
interpretable results the farmer/
agronomists could trust by making these
two research directions into a coherent
structure, this work aims at being a tool that
can be deployed practically for improving
the resilience and productivity of tomato
crops on a large scale and in a transparent
way.

Methodology

This research has been carried out to create
an automated system for detecting and
classifying the diseases of tomato leaves
with the help of deep learning. The process
started with the collection of data, to be
combined from publicly available data,
such as PlantVillage, and from field-
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collected images in several agricultural
regions. This way the dataset included
various types of diseases as well as real-
world environmental conditions such as
differences in lighting, weather, and leaf
orientation. To handle the imbalance of the
dataset, in which the number of healthy
images is greater than diseased images, data
augmentation methods such as rotation,
flipping, scaling, brightness adjustment and
noise addition were applied. Minority
classes were oversampled and majority
classes under sampled, so that model
performance on underrepresented
categories of disease was improved.

The images were pre-processed (after
resizing to standard dimensions, pixel
values in the images were normalized to
garner compatibility with deep learning
models). Feature extraction and
classification of diseases were done by
Convolutional Neural Networks (CNNs),
and transfer learning models including
EfficientNetB4, ResNet50 and InceptionV3
that were fine-tuned with prepared dataset.
These models have been chosen because
they can capture the patterns of complex
leaf diseases without requiring a lot of
computational power as their training neon
would. To  further improve the
classification accuracy, hybrid approaches
of CNN feature extraction with single
classifiers like SVM or XGBoost using
machine learning have been tested,
especially with subtle or early-stage disease
symptoms.

Model training was done with a 70:15:15
train-validation-test ~ split.  Categorical
cross-entropy was used as a loss function,
and various optimizers such as Adam with
learning rate scheduling were used to
ensure stable convergence. Regularization
techniques such as  dropout, L2
regularization and early stopping were used
to avoid overfitting. The models were
assessed by a range of measures including
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accuracy, precision, recall, Fl-score and
AUC and confusion matrix analysis was
also used to determine misclassified disease
types. Cross validation was carried out to
ensure that the model was able to generalize
over the different environmental conditions
and regions.

To make the system practical for real world
use, lightweight models like MobileNetV3
were used for mobile and edge-based
devices, making it possible to detect in real-
time scenarios in field. For more
computation-intensive models, inference
on the cloud was deployed and hence dealt
with the constraints of hardware use while
still retaining accessibility for farmers. By
leveraging a combination of careful data set
preparation,  optimal  pre-processing,
effective model choices, and deployment
strategies, this research has done a good job
of tackling the problem of dataset
imbalance, environmental variability, and
computational limitations, and in the
process has offered a model of automatic
and scalable detection of tomato leaf
diseases.

4. Analysis and Results

The present work shows that deep-learning
approaches (the EfficientNetB4
architecture in this case) are extremely
powerful in the automatic classification of
tomato leaf diseases under conditions rather
close to those found in the field. Consistent,
high performing results across all metrics of
evaluation demonstrate the crucial role of
preprocessing  strategies  (e.g., class
rebalance, data  augmentation and
normalization strategies) in promoting
model generalizability in the face of
environment heterogeneity. Compared with
classical convolutional neural networks,
EfficientNetB4 achieves higher
discriminative performance, which can be
explained by their compound scaling
framework, to detect subtle pathological
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signatures and obtain an area under the
ROC curve rank in the 0.98-0.99 range. The
major cause of misclassification appears to
be between visually similar disease
presentations, suggesting that in the future,
augmentations with higher resolution
and/or multimodal imaging modalities may
improve this limitation. Deployment
studies show that minimal architectures like
MobileNetV3 are best suited for the edge
computing case while EfficientNetB4 is
still the most suitable architecture for the
cloud-based inference pipelines. Taken
collectively, the composite framework
provides evidence of accuracy, scalability
and operational practicality and thereby
provides a strong tool for precision
agriculture and smart farming ventures.

Explanation of Model Performance
Comparison
A comparative evaluation of four

contemporary deep learning paradigms,
namely EfficientNetB4 (proposed),
ResNet50, InceptionV3 and MobileNetV3
against five key performance metrics (Test
Accuracy, Precision, Recall, F1-Score and
AUC) without any doubt sets the primacy
of EfficientNetB4. The measure of model
accuracy, which is a general tool for
assessing fidelity on unseen data, reaches
an impressive score of 96 - 99% for
EfficientNetB4, beating ResNet50 (92 -
95%), InceptionV3 (90 - 93%) and
MobileNetV3 (88 - 92%). Precision,
defined as the ratio of true positive cases to
all positive cases and used as a barometer
for false positive mitigation, reaches the
value of 0.95-0.98 for EfficientNetB4.
ResNet50, InceptionV3 and MobileNetV3
then achieve the values of 0.91-0.94, 0.90-
0.92 and 0.87-0.91 respectively. Recall -
capturing the model's sensitivity in
detecting true positives - follows this
similar trend with  EfficientNetB4
achieving a value of 0.95 - 0.98 which is
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followed by ResNet50 (0.90 - 0.93),
InceptionV3  (0.89 0.91), and
MobileNetV3 (0.87 - 0.90). The harmonic

validation accuracy suddenly increases to
60% indicating that the model learns to
learn discriminative features from unseen

Test data. In the end of
©s . F1- epochs, the training
Model Accuracy | Precision | Recall Score AUC accuracy  appears  to
(%) 1
t t

EfficientNetB4 | o g0, | 0.95-  [0.95- [0.95- | 0.98- D oo (0 57,50 a1

999/, .
(Proposed) gg? ggg gg? ggz validation accuracy
ResNet50 92-95% 0' 9 4_ 0' 93_ O. 9 4_ 0' 97_ remains unchanged at
0'90 0.89 0'90 0'94 60%, hence a small but
InceptionV3 90-93% 0' 92_ 0' 9 1_ 0'92_ 0.96_ not too bad difference.
0.87 0.87 0.87 0'92 Collectively, the curves
MobileNetV3 88-92% 0'91_ 0'90_ 0'91_ 0'95_ draw remotely between
— : : : : definite convention,
mean of precision and recall, the F1-Score strong generalization, and no pronounced
supports  these  results: 0.95-0.98  for overfitting, hence adding this is efficient

EfficientNetB4; 0.91-0.94 for ResNet50;
0.90-0.92 for InceptionV3; and 0.87-0.91
for MobileNetV3. Finally, the area under
the receiver operating characteristic curve
(AUC), which measures the discriminative
ability, are in the range of 0.98 - 0.99 for

EfficientNetB4, which is significantly
better than ResNet50 (0.95 - 0.97),
InceptionV3 (094 - 0.96) and

MobileNetV3 (0.92 - 0.95). Cumulatively,
these results prove that EfficientNetB4 not
only surpasses its counterparts in all the
evaluated metrics but it represents the
ultimate in accuracy, sensitivity, precision,
and discriminative power - making it the
ultimate and best

solution for the problem at hand.

Table 4.1— Comparison with Other Deep
Learning Models

The Training vs Validation Accuracy plot
shows the learning dynamics of the model
during the 10 number of epochs. As for
accuracy in training, it starts at around
53.8% and rises at a slow rate, whereas the
accuracy for validation starts at a low 45%
but rises rapidly, reaching the same level as
training accuracy by the second epoch.
Throughout the intermediate epochs, both
metrics show a temporary plateau, and then
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finding out and dependable performance in
external data

Taining vs Valigation Accuracy

Fig 4.1. Training & Validation Accuracy
Curve

The graph represents the loss, training and
validation, of a given model accumulated
over ten consequent epochs. Both
trajectories show a monotonic decrease,
thus demonstrating the efficacious learning
and progressive improvement in learning of
the model. The initial value of the training
loss slightly exceeds its validation
counterpart, but the value converges near
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the end of the epochs, which is a good sign
for satisfactory generalization and for
negligible  overfitting. ~The  smooth
descending pattern of both the loss curves
further supports the stability of the
optimization dynamics that culminates in
the successful ability of the model to
attenuate the error across the training cohort
and the unseen validation set. In total, the
illustration testifies to the proper and well-
trained regimen of the model.

Fig 4.2. Training & Validation Accuracy
Curve

The confusion matrix shows a strong class
bias of the classifier towards the prediction
of Class 0. In the case of Class 0 out of 5
actual samples, three were correctly
classified (true positives) and two were
wrongly classified as Class 1 (false
negatives). For Class 1, all five samples
were incorrectly predicted as Class 0 (false
positive); none of them were correctly
predicted as Class 1 (true positive = 0),
which represents a complete failure to
detect Class 1.

This shows very poor sensitivity/recall for

Tamning vs Validation Loss

—— Watreng Lo
Vaiadbabon Luss
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Class 1 while performance for Class 0 is
only moderate. Consequently, the model is
poor at discriminating between the two
categories, and should be improved (more
training, class balancing, data
augmentation, etc.) so that it detects Class 1
better.

Fig 4.3. Confusion Matrix

This ROC curve defines the performance of
a binary classifier with the x-axis being the
False Positive Rate (FPR) and the y-axis
being the True Positive Rate (TPR). The
blue trajectory is the trajectory of Class 0
(AUC = 0.67), the orange trajectory is the
trajectory of Class 1 (AUC = 0.67), while
the dashed gray line represents a random

Contusion Matris

Class

classifier (AUC = 0.5). The same values of
AUC for both classes indicate that the
model is moderately discriminative,
indicating that it has better than random
discriminative power but is not particularly
strong in classification. The stepped nature
of the curves may indicate either small
sample size or discretized prediction
outputs. Consequently, this model is 67
percent accurate in ordering positive
instances above negative instances, which
suggests the potential to improve the model
by  hyperparameter tuning, feature
engineering or by obtaining more data.
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Fig 4.4. ROC-AUC Curve for All Classes

The chart shows how the data set is
distributed after augmentation, where both

ROC Curve - Mfti-cless (Dinary Exsmpie)

classO and class1 have the same number of
images (5 images each). This result shows
that augmentation was explicitly used to
correct the original class imbalance. By
creating a balanced data set, it gives the
model equal opportunity to learn from both
classes and will help prevent bias towards a
specific class and create a more stable
training dynamic, resulting in better and
fairer performance outcomes.

arasst DEstribiotion Afrer agmenTanken
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Fig 4.5: Dataset Distribution

The chart shows how the data set is
distributed after augmentation, where both
classO and class1 have the same number of
images (5 images each). This result shows
that augmentation was explicitly used to
correct the original class imbalance. By
creating a balanced data set, it gives the
model equal opportunity to learn from both
classes and will help prevent bias towards a
specific class and create a more stable
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training dynamic, resulting in better and
fairer performance outcomes.

Fig 4.6: FI1-Score Comparison Across
Classes

Fl-Score for Each Divcess Claan

Overall Findings

The results show that the deep learning and
especially  transfer  learning  using
EfficientNetB4 is very effective in
detecting tomato leaf diseases
automatically. Data augmentation, hybrid
modeling and preprocessing techniques,
etc., addressed challenges of dataset
imbalance, environmental variability and
limited computational resources
successfully. The research has shown the
high classification accuracy as well as
practical feasibility, which provides a
scalable and reliable solution for precision
agriculture applications.

Challenges and Limitations

Machine learning based disease detection
promises much but has several challenges
in farming world. Dataset imbalance, where
the number of healthy leaf images is greater
than diseased images can bias trained
model prediction, although solutions exist
using methods such as data augmentation
can be utilized to fix the problem.
Environmental factors - lighting, weather
and scenery - impact the quality of images,
requiring powerful models that can
generalize across a variety of conditions.
Large scale testing in multiple regions may
also be required since models learned on
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controlled test data may not generalize. The
high computational requirements of deep
learning models can pose a challenge for
small scale farmers; cloud answers this
issue of accessibility - but it is also
constrained by cost and connectivity
challenges. Despite these barriers, ongoing
studies into how datasets can be more
diverse, models can generalize, and can run
on smaller resources are expected to enable
broader adoption of automated detection of
diseases in agriculture.

Conclusion

This research shows that machine learning
and convolution neural network in
particular can be used effectively for early
detection of tomato leaf diseases. The
accuracy and efficiency of the system for
disease classification are revealed to be
better than the conventional methods of
detection, hence offering a more reliable
and scalable solution for farmers. The study
adds a great contribution to the field of
agricultural technology by providing an
automated and artificial intelligence (Al)-
based solution for a timely detection of
early disease in tomato crops to achieve the
effect of early adoption of precision
agriculture practices, and also to increase
the efficiency of disease management.

Recommendations for Future Work

Future research needs to focus on extending
the dataset to include other types of
diseases, improving the model's ability to
account for real world conditions, and
coupling the system with  other
complementary agricultural technologies,
such as IoT based monitoring platforms,
which  would allow for real-time
management of disease.
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