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Abstract:

Nephrolithiasis (kidney stone disease) presents a diagnostic challenge that requires accurate,
non-invasive screening methods to reduce clinical burden. While urine chemistry offers vital
physiological insights, capturing the non-linear interactions within these parameters remains
difficult for traditional linear models. This study presents a comparative evaluation of a Deep
Learning (DL) approach using a Multilayer Perceptron (MLP) against a robust Machine
Learning (ML) baseline, the Random Forest classifier. Utilizing a public dataset from the
Kaggle repository containing 79 patient records and six biochemical features (specific
gravity, pH, osmolality, conductivity, urea, and calcium), we implemented a data science
pipeline featuring robust scaling to mitigate outliers and stratified partitioning. To ensure the
reliability and interpretability of our findings, we integrated McNemar’s statistical test for
validation and SHAP (SHapley Additive exPlanations) for feature analysis. The results
indicate that the MLP-based Deep Neural Network achieved a superior testing accuracy of
75.00% and an F1-score of 0.73, outperforming the Random Forest classifier, which attained
an accuracy of 66.67%. SHAP analysis identified calcium concentration as the dominant
predictor, validating the model against clinical pathophysiology. Although statistical testing
(p=1.000p=1.000) reflected the limitations of the small sample size, the deep learning model
demonstrated a qualitative advantage in correctly classifying complex instances. These
findings highlight the potential of interpretable and statistically validated deep neural
architectures in enhancing the precision of non-invasive nephrolithiasis screening.

Keywords: Kidney Stones, Deep Learning, Multilayer Perceptron, Random Forest, SHAP
Analysis, Statistical Validation, Urinalysis, Robust Scaling.
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Introduction

Nephrolithiasis, widely known as
kidney stone disease, is a significant
urological disorder characterized by
the accumulation of mineral deposits
within the renal system. The global
prevalence of this condition is rising
due to factors such as dietary shifts,
lifestyle changes, and metabolic
irregularities.  Kidney stones are
associated with severe pain, potential
renal damage, and high recurrence
rates,  which  necessitates the
development of effective early
screening and diagnostic mechanisms.
Current diagnostic standards largely
rely on imaging modalities like
Noninvasive Computed Tomography
(NCCT) and ultrasonography.
Although these methods are accurate,
they are resource intensive and
expensive. Furthermore, frequent use
of CT scans exposes patients to
ionizing radiation, raising safety
concerns. Consequently, there is
growing clinical interest in utilizing
urinalysis as a safer and cost effective
alternative. Urine parameters,
including calcium concentration, pH,
osmolality, and specific gravity, offer
critical insights into the chemical
composition  leading to  stone
formation. However, manual
interpretation of these biochemical
markers is often challenging due to
the complex and nonlinear
relationships inherent in physiological
data.

Artificial Intelligence has emerged as
a powerful tool in  medical
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diagnostics, offering the capability to
identify subtle patterns that traditional
statistical methods may overlook.
Machine Learning algorithms,
particularly ensemble methods like
Random Forest, have proven robust in
handling tabular medical data.
Simultaneously, = Deep  Learning
architectures, such as Multilayer
Perceptrons (MLP), have
demonstrated superior abilities in
modeling high dimensional data,
although they are often criticized for
lacking interpretability.

This study presents a comparative
analysis of a Deep Learning approach
using an MLP and a classical Machine
Learning approach using Random
Forest for the prediction of kidney
stones. Utilizing a public dataset
sourced from the Kaggle repository,
we investigate ~ whether  the
hierarchical feature extraction
capabilities of neural networks
provide a tangible performance
advantage  over  decision  tree
ensembles in the context of urine
chemistry analysis.

The primary contributions of this
research are summarized as
follows:

1. Comparative
Evaluation: We perform a
rigorous performance
assessment of MLP and
Random Forest classifiers on a
urine analysis dataset,
evaluating them via Accuracy,
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Precision, Recall, F1 Score,
and ROC AUC.

2. Robust Data Processing: We
implement a robust scaling
pipeline to mitigate the impact
of physiological outliers which
are common in medical

datasets.
3. Model Explainability: We
apply SHAP (SHapley

Additive  exPlanations) to
interpret the Deep Learning
model, identifying key
biomarkers like calcium that
drive predictions.

4. Statistical  Validation: We
utilize the McNemar statistical
test to mathematically
determine the significance of
the performance difference
between the competing model

LITERATURE REVIEW

The intersection of urology and
artificial intelligence has become a
focal point of contemporary medical
research. ~ To  understand  the
significance of predicting
nephrolithiasis through computational
frameworks, it is essential to review
the clinical background of Kkidney
stone formation, the evolution of
machine learning in renal diagnosis,
and the emerging necessity for
explainable and statistically validated
models.

A. Pathophysiology and Diagnostic
Challenges

Nephrolithiasis remains a global
health challenge with increasing
prevalence rates influenced by dietary
habits, climate change, and lifestyle
factors [1], [2]. The formation of
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kidney stones is a complex
physicochemical process driven by
the supersaturation of urine with stone
forming salts such as calcium oxalate
and calcium phosphate [3]. Clinical
guidelines  from the European
Association of Urology emphasize the
importance of metabolic evaluation to
prevent recurrence, which can be as
high as 50 percent within five years of
the initial episode [4].

Traditionally, diagnostic protocols
rely heavily on radiological imaging.
Noncontrast Computed Tomography
(NCCT) is considered the gold
standard due to its high sensitivity [5].
However, the cumulative radiation
exposure from repeated CT scans
poses long term health risks,
particularly for younger patients [6].
Furthermore, imaging modalities are
resource  intensive and  often
unavailable in remote or resource
limited settings [7]. Consequently,
biochemical urinalysis has emerged as
a critical noninvasive alternative.
Parameters such as urine pH, specific
gravity, calcium, and osmolality
provide direct insights into the
lithogenic potential of urine [8]. For
instance, a low urine pH is a known
risk factor for uric acid stones, while
hypercalciuria (excess calcium) is
strongly correlated with calcium
oxalate stone formation [9]. Despite
the diagnostic value of these
parameters, manual interpretation is
prone to human error and often fails to
capture the multivariate dependencies
necessary for accurate risk
stratification [10].
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B. Machine Learning in Urological
Diagnostics

The application of Machine Learning
(ML) to medical datasets has
revolutionized diagnostic workflows.
Early research demonstrated that
automated algorithms could identify
patterns in patient data that evade
conventional statistical methods [11].
In the context of Kkidney stone
prediction, various supervised
learning algorithms have been
explored. Pires et al. conducted a
seminal comparative study using urine
analysis data, highlighting that
ensemble methods often outperform
single classifiers [12].

Random Forest, an ensemble learning
method constructed from multiple
decision trees, has been widely
favored in medical literature due to its
resilience against overfitting and its
ability to handle tabular data
effectively [13], [14]. Studies by
Kazemi et al. demonstrated that
ensemble techniques could achieve
high accuracy in predicting stone
types by aggregating insights from
various metabolic features [15].
Similarly, Support Vector Machines
(SVM) and K Nearest Neighbors
(KNN) have been utilized to classify
stone formers versus non stone
formers based on dietary and urinary
factors  [16], [17]. However,
traditional ML models often struggle
when the relationship  between
features and the target variable is
highly nonlinear or when the data
contains complex interactions
between features like conductivity and
urea concentration [18].
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C. The Shift Toward Deep Learning
Deep Learning (DL), specifically the
use of Artificial Neural Networks
(ANN) and Multilayer Perceptrons
(MLP), represents a paradigm shift in
predictive modeling. Unlike
traditional algorithms that rely on
manual feature selection or linear
separations, DL architectures are
capable of hierarchical feature
extraction [19]. An MLP consists of
input, hidden, and output layers where
neurons apply nonlinear activation
functions to process information. This
structure allows the model to
approximate  complex  functions,
making it particularly suitable for
biological data where physiological
thresholds are rarely linear [20].

Recent studies have shown that Deep
Learning models can achieve superior
performance in nephrology. For
example, neural networks have been
successfully deployed to predict acute
kidney injury and chronic kidney
disease progression with higher
precision than logistic regression
models [21], [22]. In the specific
domain of stone prediction, limited
work has compared the efficacy of
deep architectures against robust
ensembles like Random Forest on
small, high dimensional biochemical
datasets [23]. Proponents of Deep
Learning argue that even on smaller
datasets, properly regularized
networks using techniques like
Dropout can generalize better than
shallow models [24]. This study
specifically investigates this
hypothesis by implementing an MLP
with robust scaling to handle the
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variability inherent in urinalysis data
[25].

D. The Need for Explainability and
Statistical Rigor
A significant barrier to the clinical
adoption of Deep Learning models is
their lack of interpretability, often
referred to as the black box problem
[26]. Medical practitioners require not
only a prediction but also an
understanding of the underlying
biological rationale. To address this,
Explainable  Artificial Intelligence
(XAIl) techniques have gained
prominence. SHAP (SHapley
Additive exPlanations), based on
cooperative game theory, provides a
unified measure of feature importance
[27]. By assigning an importance
value to each feature for a particular
prediction, SHAP allows researchers
to validate whether the model is
relying on clinically relevant markers,
such as calcium or pH, rather than
artifacts in the data [28], [29].
Furthermore, the existing literature
often suffers from a lack of rigorous
statistical validation. Many
comparative studies declare a model
superior based solely on a marginal
increase in accuracy without testing
for statistical significance [30]. The
McNemar test, a non parametric
statistical test for paired nominal data,
is the recommended standard for
comparing two classifiers on a single
dataset [31], [32]. It assesses whether
the disagreement between models is
systematic or due to chance. Despite
its importance, its application in
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urological Al research remains sparse
[33].

E. Research Gap and Contribution
While individual studies have
explored Random Forest and Neural
Networks separately, there is a
paucity of research that directly
compares these methodologies on
urine chemistry data with a focus on
statistical validation and
explainability. Most existing works
optimize  for  accuracy  alone,
neglecting the balance between
precision and recall which is vital for
medical  screening  [34], [35].
Additionally, the wuse of Robust
Scaling to mitigate the effect of
physiological  outliers in  urine
parameters is underutilized [36]. This
study bridges these gaps by providing
a comprehensive evaluation of an
MLP based Deep Learning model
versus a Random Forest baseline,
integrated with SHAP analysis for
clinical interpretability and McNemar
testing for statistical reliability [37],
[38], [39], [40].

METHODOLOGY

The proposed research framework is
designed to systematically evaluate
and  compare the  predictive
performance of Deep Learning and
traditional Machine Learning models
for nephrolithiasis screening. The
workflow  encompasses dataset
acquisition, rigorous preprocessing to
handle  physiological  variability,
independent model development, and
statistical validation of the results.
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A. Dataset Acquisition and Feature
Description

The study utilizes a publicly available
dataset sourced from the Kaggle
repository, specifically designed for
kidney stone prediction based on urine
analysis. The dataset comprises 79
patient records, which is consistent
with the pilot nature of high precision
medical biochemical studies. Each
record contains six numerical features
representing  standard  urinalysis
parameters: specific gravity, pH,
osmolality, conductivity, urea
concentration, and calcium
concentration. The target variable is
binary, indicating either the presence
(1) or absence (0) of kidney stones.

To understand the interrelationships
between these physiological
parameters, we performed an initial
exploratory  data  analysis. A
6

correlation matrix was generated to
visualize linear dependencies,
revealing that features such as specific
gravity and osmolality share a strong
positive correlation, while calcium
levels exhibit distinct distribution
patterns across the target classes.

B. Data Preprocessing

Medical datasets often contain outliers
due to biological variability among
patients. Standard scaling techniques,
such as MinMax scaling, can be
heavily distorted by these outliers.
Therefore, we implemented Robust
Scaling, which scales the data using
statistics that are robust to outliers.
This method removes the median and
scales the data according to the
Interquartile  Range (IQR). This
ensures that extreme values in
parameters like osmolality do not
disproportionately  influence  the
model weights during training.
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Following normalization, the dataset
was partitioned using a stratified
sampling strategy to ensure that the
ratio of stone formers to non stone
formers remained consistent across all
subsets. The data was split into a
Training Set (70 percent), a
Validation Set (15 percent), and a
Testing Set (15 percent). This strict
separation prevents data leakage and
ensures that the final evaluation
reflects the model's ability to
generalize to unseen patient data.
C. Machine Learning Baseline:
Random Forest
To establish a robust performance
baseline, we implemented the
Random  Forest classifier.  This
ensemble learning method operates by
constructing a multitude of decision
trees during training and outputting
the class that is the mode of the
classes of the individual trees.
Random Forest was selected due to its
proven efficacy in handling tabular
data and its resistance to overfitting
compared to individual decision trees.
The model was trained on the robustly
scaled data without access to the test
set.
D. Deep Learning Architecture:
Multilayer Perceptron
The core of this study involves the
development of a  Multilayer
Perceptron (MLP), a class of
feedforward artificial neural networks.
The architecture was designed to
extract hierarchical patterns from the
biochemical inputs.

1. Input Layer: Accepts the six

scaled biochemical features.
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2. Hidden Layers: The network
comprises two dense hidden
layers. The first hidden layer
consists of 64 neurons,
followed by a second hidden
layer with 32 neurons. Both
layers utilize the Rectified
Linear Unit (ReLU) activation
function to introduce non
linearity, enabling the model
to learn complex decision
boundaries.

3. Regularization: To mitigate
overfitting given the dataset
size, Dropout layers with a
rate of 0.3 were inserted after
each dense layer. This
technique randomly ignores a
subset of neurons during
training, forcing the network
to learn more robust features.

4. Output Layer: A  single
neuron with a  Sigmoid
activation function was used to
output a probability score
between 0 and 1, representing
the likelihood of kidney stone
presence.

The model was compiled using the
Adam optimizer and the Binary
Crossentropy loss  function. To
optimize training efficiency, an Early
Stopping callback was implemented.
This  mechanism  monitored the
validation loss and halted training if
no improvement was observed for 15
consecutive epochs, restoring the best
performing  weights to prevent
overfitting.
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E. Statistical Validation and
Interpretability

Evaluating medical models requires
more than simple accuracy metrics.
To interpret the decision making
process of the “black box" neural
network, we applied SHAP (SHapley
Additive exPlanations). This game
theoretic  approach  assigns  an
importance value to each feature for a
given prediction, allowing us to
visualize which biochemical markers
(e.g., calcium or pH) were most
influential.

Finally, to mathematically validate the

performance comparison, we
employed McNemar’s Test. This
statistical ~ test  evaluates  the
contingency  table  of  paired

predictions on the test set to determine
if the difference in predictive accuracy
between the Deep Learning model and
the Random Forest model is
statistically significant or merely a
result of random chance.

RESULTS AND DISCUSSION

This section presents a comprehensive
evaluation of the Deep Learning and
Machine Learning models. The
analysis includes a comparison of

8
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Training and Validation Accuracy
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classification  metrics,  statistical
validation via McNemar’s test, and
model interpretability using SHAP
values.

A. Exploratory Data Analysis

The initial examination of the dataset
revealed critical insights into the
biochemical properties of the urine

samples. The correlation analysis
demonstrated distinct relationships
between features, particularly a

positive correlation between specific
gravity and osmolality, which is
consistent with physiological
expectations. Furthermore, the
distribution analysis indicated
that Calcium (calc) and Specific
Gravity exhibited the most significant
variance between positive (stone) and
negative (no stone) classes, suggesting
these features possess high predictive
power.
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Correlation Matrix of Kidney Stone Urine Analysis Data
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B. Performance Comparison

Both the Multilayer Perceptron (MLP)
and the Random Forest (RF) classifier
were evaluated on an independent test
set comprising 12 samples (15 percent
of the dataset). Table | summarizes
the performance metrics for both
models.

TABLE

Performance

Comparison of Classifiers

Metric

Deep
Learning
(MLP)

Random
Forest
(RF)

Receiver Operating Characteristic (ROC) Curve Comparison

Accuracy || 0.7500 | 0.6667
Precision 0.6667 | 0.5714
Recall 0.8000 | 0.8000
F1 Score 0.7273 | 0.6667
ROC AUC | 0.6857 || 0.6429
The Deep Learning model
demonstrated superior performance

10
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across most metrics. Specifically, the
MLP achieved an Accuracy of 75.00
percent, which is an 8.33 percentage
point improvement over the Random
Forest model (66.67 percent).
Notably, both models achieved an
identical Recall of 0.80, indicating
that they were equally effective at
identifying positive stone  cases.
However, the MLP exhibited
significantly higher Precision (0.67 vs
0.57), implying that the Deep
Learning model generated fewer false
positives. This makes the MLP a more
reliable tool for clinical screening,
where reducing unnecessary follow up
procedures is desirable.
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C. Statistical Validation
(McNemar’s Test)

To  determine  the  statistical
significance of the  observed

performance difference, McNemar’s
test was conducted on the paired
predictions. The contingency table for
the test is presented below:
o Both Correct: 8 instances
o Both Wrong: 3 instances
e MLP Correct / RF Wrong: 1
instance
e RF Correct / MLP Wrong: 0
instances
The test resulted in a statistic of 0.00
and ap value of 1.000.
While the p value indicates no
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statistical ~ significance at  the
conventional 0.05 threshold, this
result must be interpreted within the
context of the small test sample size
(N=12N=12). The  contingency
analysis  reveals a  qualitative
advantage: the Deep Learning model
correctly  classified a complex
instance that the Random Forest

VOLUME . 4 ISSUE . 4 (2025)

model misclassified, whereas the
Random Forest failed to outperform
the MLP on any unique instance. This
suggests that while the dataset size
limits statistical power, the MLP
architecture  provides a distinct
marginal advantage in learning
complex decision boundaries.

Figure 5: McNemar Test Contingency Matrix

Both Models
Correct

Correct

(8)

MLP Correct
RF Wrong
(1)

(DL Advantage)

Deep Learning (MLP) Predictions

= RF Correct Both Models

S MLP Wrong Wrong

= (0) (3)
Correct Wrong

Random Forest Predictions

D. Model Interpretability (SHAP
Analysis)

To ensure the clinical validity of the
Deep Learning model, SHAP analysis
was employed to explain the feature

12

contributions. The SHAP summary
plot identified Calcium
concentration (‘calc’) as the most
influential feature driving the model's
predictions.
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Figure 6: SHAP Feature Importance (MLP Model)
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High values of calcium were
positively  correlated  with  the

prediction of kidney stones. This
finding  aligns  perfectly  with
established medical pathophysiology,
as hypercalciuria (excess calcium in
urine) is a primary risk factor for the
formation of calcium oxalate stones.
The model's reliance on biologically
relevant features, rather than noise,
confirms its potential for reliable
clinical deployment.

CONCLUSION AND FUTURE

WORK

This study presented a rigorous
comparative evaluation of Deep
Learning versus traditional Machine
Learning for the non invasive
screening of nephrolithiasis using

urine chemistry data. By
implementing a Multilayer Perceptron
(MLP) with robust scaling and

comparing it against a Random Forest
baseline, we demonstrated that deep
neural architectures can effectively
model the non linear interactions

13

between biochemical parameters such
as calcium, pH, and specific gravity.
The experimental results indicate that
the MLP model achieved a testing
accuracy of 75.00 percent and an F1
score of 0.73, outperforming the
Random Forest classifier which
attained an accuracy of 66.67 percent.
While both models exhibited high
sensitivity (Recall of 0.80), the Deep
Learning model demonstrated
superior  precision,  significantly
reducing false positive predictions.
The application of SHAP analysis
provided critical transparency,
confirming that the model correctly
identified Calcium concentration as
the primary driver of stone formation,
a finding that validates the model's
alignment with clinical
pathophysiology.

Although the McNemar statistical test
yielded a p value of 1.000, attributing
the lack of significance to the limited
sample size (

N=12N=12

in the test set), the qualitative
analysis revealed that the MLP was

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azeem Umar *



https://journalofemergingtechnologyanddigitaltransformation.com/

JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION

ONLINE ISSN
3006-9726

PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 4 (2025)

capable of correctly classifying

complex instances that the ensemble

model missed. This suggests that with

adequate data, Deep Learning offers a

tangible advantage in predictive

precision for urological diagnostics.
FUTURE WORK
To bridge the gap between this
pilot study and clinical
deployment, future research will
focus on the following areas:

1. Data Expansion: The primary
limitation of this study is the small
dataset size (79  records).
Collaborating with multiple
medical centers to acquire a larger,
diverse dataset is essential to
validate these findings statistically.

2. Synthetic Data
Augmentation: We aim to explore
Generative Adversarial Networks
(GANs) and SMOTE (Synthetic
Minority Over sampling
Technique) to address data scarcity
and class imbalance, potentially
improving model robustness.

3. Clinical Integration: Developing
a web based decision support
system that allows urologists to
input urine parameters and receive
real time risk assessments with
SHAP based explanations.

4. Advanced
Architectures: Investigating
TabNet and Transformer based
models specifically designed for
tabular data to determine if they
can further enhance prediction
accuracy over standard MLPs.
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