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Abstract:

Protein structure prediction (PSP) remains one of the most challenging and impactful problems
in computa- tional biology. This review systematically examines the evolution of PSP
methodologies, from traditional computational approaches to cutting-edge deep learning
techniques. We begin with classical methods such as homology modeling and molecular
dynamics, then explore machine learning-based approaches including neural networks and
protein language models. Special emphasis is placed on revolutionary deep learning
architectures like AlphaFold2 and RoseTTA Fold, which have achieved remarkable accuracy
in recent CASP competitions. We also discuss emerging directions in reinforcement learning
for protein folding simulation and design. Throughout the review, we highlight key biological
insights, computational innovations, and remaining challenges in the field.
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Introduction

ROTEINS serve as fundamental
macromolecules within living organisms,
playing pivotal roles in virtually every
biological process. From catalyzing
metabolic reactions to maintaining structural
integrity, their functionality is both vast and
vital. The cor- nerstone of this diverse
functionality lies in the three- dimensional
(3D) structure of proteins, determined by
their amino acid sequences.[1] This
sequence-structure relationship forms the
essence of the “protein fold- ing problem,” a
longstanding  challenge in  molecular
biology.[2]

The importance of solving this problem
cannot be overstated, with implications
spanning  drug  discovery,  enzyme
engineering, and disease mechanism studies
[3]. Misfolded proteins are implicated in
numerous diseases including Alzheimer’s
and Parkinson’s [4], making accurate
structure  determination  essential  for
biomedical research.

Historically, three experimental techniques
have dominated  protein structure
determination:

e X-ray crystallography (high resolution
but re-quires crystallization) [5]

e NMR spectroscopy (solution studies but
limited to small proteins) [6]

o Cryo-EM (powerful for large complexes
but resource-intensive) [7]

Due to these limitations, computational PSP
meth- ods have become increasingly crucial.
The widening gap between known sequences
(UniProt) and solved structures (PDB)
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underscores the need for reliable
computational prediction methods [8].

Prior to the deep learning revolution in
protein structure prediction, foundational
methods such as the Chou—Fasman algorithm
[1], GOR method [2], and early homology
modeling efforts laid the ground- work for
structural bioinformatics. A comprehensive
pre-deep learning review can be found in
[20], which summarizes approaches before
2019. These early mod- els, although limited
in accuracy and scalability, intro- duced core
concepts in residue prediction, statistical
potentials, and comparative modeling that
remain relevant today

2. Traditional Computational Methods

The emergence of computational protein
structure prediction stemmed from the
recognition that experi- mental methods,
although precise, are often slow and resource-
intensive. Techniques such as X-ray crystal-
lography and nuclear magnetic resonance
(NMR) spec- troscopy, while capable of
delivering high-resolution structures, cannot
keep up with the rapidly expanding volume of
protein sequence data generated by modern
high-throughput sequencing. To address this
dispar- ity, researchers developed traditional
computational strategies based on established
biological knowledge and fundamental
physical principles. These meth- ods aimed to
provide approximate yet useful struc- tural
insights, relying on information such as
sequence homology, evolutionary
conservation, and energetics. Traditional
approaches—such as homology modeling,
protein threading, and ab initio prediction—
laid the essential groundwork that enabled the
emergence of more sophisticated machine
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learning and deep learn- ing models in recent Homology modeling excels when the
years. sequence iden- tity between the target and the
template exceeds 30%, allowing accurate
2.1 Homology Modeling inference of the backbone confor- mation and

side-chain packing. However, its accuracy
diminishes significantly in the so-called
“twilight zone” (sequence identity below
30%), where alignment errors and structural
divergence limit reliability [15]. More- over,
homology models often inherit the
imperfections and missing residues present in
the template struc- tures, especially in flexible
loop regions or disordered segments, which
are challenging to model accurately. Despite
these drawbacks, homology modeling
remains a cornerstone technique due to its
efficiency and rela- tive accuracy when
suitable templates exist.

Homology modeling, also known as
comparative mod- eling, is predicated on the
evolutionary concept that proteins with
similar sequences tend to adopt similar
structures. This methodology involves
aligning a tar- get protein sequence to one or
more template proteins with known structures
and then constructing a 3D model based on
this alignment.

The process of homology modeling generally
in- volves four major steps: template
identification, se- quence alignment, model
building, and model vali- dation. Template

identification relies on searching databases of 2.2 Threading (Fold Recognition)
experimentally solved structures, such as the

Protein Data Bank (PDB), to find suitable Threading, also called fold recognition, was
templates ~ sharing  significant sequence developed to tackle cases where sequence
similarity. Se- quence alignment is a critical similarity is too low to identify homologous
step where the target and template sequences templates but where structural similarity
are aligned, ensuring homol- ogous residues might still exist. Unlike homology modeling,
correspond  spatially. ~ Tools such  as threading methods attempt to “thread” the
MODELLER automate the model-building target sequence onto a library of known
process, which generates atomic coordinates protein folds and evaluate how well the
for the target based on the aligned template sequence fits each fold based

structures [14, 16].

Table 1: Comparison of Traditional Protein Structure Prediction Approaches (2019-2024)

Method Key Features Best Use Example Paper Year
Case (Citation)

Homology Uses known structure Sequence Zhang and Xie, "Deep 2021
Modeling templates with high identity > 30% | learning in protein

sequence identity structure pre-diction” [13]
Threading Aligns sequence to Remote Zhou and Liu, 2020
(Fold known folds; works homology ”Understand-ing protein
Recognition) | with low identity detection folding...” [15]
Ab Initio No template required; Small proteins Singh et al.,”Advances | 2020
Modeling energy minimization (<100 in deep neural
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residues) networks...” [17]
Fragment Reconstructs protein Medium- Nguyen et al., "Review 2020
Assembly from known frag-ments | length pro- using deep learning” [18]
teins with
unknown
fold
Loop Predicts flexible loop Gaps in Alniss et al., "ML 2020
Modeling regions templates or models for PSP [14]
active site
mod-eling
Side-Chain Optimizes side-chain Enzyme Alford et al., ”Deep 2020
Modeling conformations using active sites or | learning models for
rotamers interface PSP” [16]
model-ing
Molecular Refines structure using Local Li et al., ”From 2019
Dynamics physical simulations refinement, sequence to structure”
(MD) Conformation | [19]
al flexibility
Hybrid Combines threading, ab Targets with | Jumper et al., 2021
Methods initio, refinement weak ”AlphaFold accuracy” [7]
(e.g., I- templates
TASSER)

On  physicochemical and  structural
compatibility [17]. This approach uses
scoring functions that incorpo- rate residue
environment, secondary structure propen-
sity, solvent accessibility, and residue-residue
contact potentials to assess the fitness of the
sequence in a particular fold. Methods like
Phyre2 and MUSTER apply sophisticated
threading algorithms to detect remote
homologs and recognize folds even without
detectable sequence similarity.

Threading is especially valuable for proteins
lack- ing close homologs with known
structures, expanding the coverage of
structural prediction. However, its accuracy
heavily depends on the quality of the scoring
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functions and the completeness of the fold
library. In- correct scoring or absence of the
correct fold template in the database can lead
to erroneous fold assignment [14].

2.3Ab Initio (De Novo) Modeling

Ab initio modeling aims to predict protein
structures without relying on homologous
templates, based solely on physicochemical
principles and thermodynamics. It attempts to
identify the lowest free-energy confor-
mation of a protein sequence by sampling the
vast conformational space accessible to the
polypeptide chain [19].

The central challenge of ab initio modeling
lies in the astronomical size of this

Dilawar Khan*




JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION

ONLINE ISSN
3006-9726

PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

conformational space — a dilemma known as
Levinthal’s paradox. To overcome this,
methods like Rosetta utilize fragment assem-
bly approaches, sampling small peptide
fragments ex- tracted from known structures
and assembling them into full-length models
guided by energy functions [16].

While ab initio methods have shown success
in accu- rately predicting small protein folds,
their applicabil- ity to larger proteins is
limited due to computational complexity and
the difficulty of accurately modeling long-
range interactions. Nonetheless, ab initio
prin- ciples have driven improvements in
energy functions and sampling strategies.

2.4 Fragment Assembly

Fragment assembly is a hybrid technique that
simpli- fies the folding problem by dividing it
into manageable subproblems. It involves
selecting short structural fragments from a
library of known protein structures that match
segments of the target sequence. These
fragments are then assembled into complete
structures  using  stochastic ~ sampling
algorithms [12, 16].

This method reduces the complexity of
conforma- tional sampling by constraining
possible backbone conformations to those
observed in solved structures. Tools such as
Rosetta have demonstrated remarkable
success using fragment assembly, especially
for small to medium-sized proteins.

2.5 Knowledge-Based Potentials

Knowledge-based potentials are derived by
analyzing the frequencies of residue-residue
interactions, dis- tances, and angular
relationships in protein struc- tures. These
statistical observations are translated into
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scoring functions used to evaluate model
quality [19, 18].

Common examples include DFIRE, DOPE,
and sta- tistical pairwise contact potentials.
These are widely used for model validation
and structure refinement.

2.6 Loop Modeling

Loops are flexible protein regions connecting
sec- ondary structures. Accurate modeling of
loops is crucial for functional relevance,
especially in homology models. Loop
modeling uses both database searches and ab
initio sampling to find conformations
compat- ible with flanking regions [15, 19].

2.7 Side-Chain Modeling

Side-chain modeling aims to place amino
acid side chains onto a fixed backbone using
rotamer libraries.

Tools use energy functions and optimization
algo- rithms such as Monte Carlo or dead-end
elimination for this task [19].

This modeling is especially important for
detailed studies of enzyme active sites or
docking simulations [17].

2.8 Molecular Dynamics Simulations

Molecular dynamics (MD) simulates atomic
motions over time using Newtonian
mechanics. MD is pri- marily used for
refining protein models by allowing
relaxation to energetically favorable states
[15, 10].

Due to computational intensity, MD is often
limited to local refinement but is valuable for
studying protein dynamics and validating
predicted models.

Dilawar Khan*



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION

ONLINE ISSN
3006-9726

PRINT ISSN
3006-9718

2.9 Hybrid Approaches

Hybrid methods combine various modeling
techniques to enhance prediction accuracy.
For example, I- TASSER uses threading,
fragment  assembly, and  structural
refinement. These systems exploit the
strengths of multiple methodologies while
minimizing individual weaknesses [8, 7, 3].

Hybrid approaches are now standard in
structural prediction pipelines and have been
instrumental in community challenges like
CASP [10, 14].

3 Machine Learning Approaches

VOLUME . 4 ISSUE . 2 (2025)

The advent of machine learning (ML)
revolutionized protein structure prediction by
introducing models capable of learning
complex, non-linear relationships between
protein sequences and structural features.
Unlike traditional methods that relied heavily
on hand- crafted rules or physical
simulations, ML methods can learn directly
from data, making them particularly suited
for capturing subtle evolutionary and
biophys- ical patterns [14, 13]. This section
explores various ML-based approaches used
in the different stages of protein structure
prediction.

Table 2: Comparison of Traditional Protein Structure Prediction Approaches

Key Features Best Use Case Typical Accuracy
(RMSD or TM-
score)
Homology Modeling Uses known structure | Sequence identity ¢ | RMSD: 1-3 °A or TM-
tem-plates with high | 30% score ;, 0.7
sequence identity
Threading(Fold Aligns sequence to | Remote homology | RMSD: 3-5 °A or TM-
Recognition) known folds; works | detection score = 0.5-0.7
with low iden-tity
Ab Initio Modeling No template required; | Small proteins (j100 | RMSD: 4-8 °A or TM-
en-ergy minimization | residues) score | 0.5
Fragment Assembly Reconstructs  protein | Medium-length ~ pro- | RMSD: 2-6 A
from known fragments | teins with unknown fold
Loop Modeling Predicts flexible loop | Gaps in templates or | RMSD: 1.5-5 A® (for
re-gions active site mod-eling loops)
Side-Chain Model- ing | Optimizes side-chain | Enzyme active sites or | Side-chain RMSD: 1-
con-formations using | interface model-ing 2°A
rotamers
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Molecular Dynam- ics

Refines structure using

Local refinement, Improves by 0.5-2

A

TASSER)

abinitio, refinement

(MD physical simulations conformational
flexibility
Hybrid Methods (e.g., I- | Combines threading, | Targets with weak | RMSD: 24 °A or TM-

score ~ 0.6-0.8

templates

3.1 Secondary Structure Prediction

One of the first successful ML applications in
struc- tural bioinformatics was secondary
structure predic- tion. Traditional statistical
methods struggled with capturing long-range
dependencies and required care- ful curation
of feature sets [2]. ML-based techniques,

methods combining several weak classifiers
improved accuracy by reducing individual
model biases. However, these models
depended heavily on the quality of the input
features and struggled with low-homology
sequences. Later methods began to
incorporate windowed fea- tures, where a
local segment of the protein (typically 15-21

particularly ~ Support Vector Machines residues) was used as the input for ML
(SVMs), Ran- dom Forests, and ensemble classifiers.  Although effective, these
learning  models, brought significant window-based approaches limited the

performance improvements by integrating a
wide variety of sequence-based and
evolutionary features [19].

model’s ability to capture global dependen-
cies, a problem eventually addressed by deep
learning models such as convolutional and

recurrent neural networks [13, 18].
Methods such as PSIPRED and SPIDER3

utilized position-specific scoring matrices
(PSSMs), amino acid  composition,
hydrophobicity scales, and pre- dicted solvent
accessibility to classify residues into helix,
strand, or coil states [14, 17]. Ensemble

3.2 Contact Map Prediction

Contact map prediction is essential for
inferring the 3D topology of a protein from its
sequence. It in-

Table 3: Comparison of Machine Learning Approaches in Protein Structure Prediction
(2019-2024)

Example Paper

ML Technique

Key Features Best Use Case

(Cita-
tion)
Secondary Structure | Uses evolutionary Predicting helix, | Singh et al., 2020
Prediction profiles, PSSMs, strand, coil labels | “Advances
SVMs, ensemble in DNNs for protein
models struc- ture” [17]
Contact Map Co-evolutionary Inferring residue- | Nguyen et al., 2020
Predic-tion fea-tures + residue contacts ”Comprehen-
SVMs or Na“ive sive review DL PSP”
Bayes; later [18]
CNNs
289
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are in contact (typically within 8°A). ML
models initially used evolutionary couplings
from MSAs and applied classifiers such as
SVMs or Na“ive Bayes models to predict
contact probabilities [16].

Later methods like MetaPSICOV and
DeepCon- tact used richer feature sets,
combining evolutionary profiles, predicted
secondary structures, and coevolu- tion
metrics [13]. The incorporation of
convolutional neural networks allowed these
methods to capture spatial dependencies
across the sequence and improve long-range
contact prediction [19].

These methods were further enhanced with
the use of ensemble strategies, dropout-
based regularization, and multi-task learning
frameworks, allowing for im- proved
generalization [14]. The output of these
models often feeds into downstream
structure reconstruction algorithms that use
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optimization-based methods [16].
3.3 Hidden Markov Models (HMMs)

Hidden @ Markov ~ Models (HMMs)
revolutionized se- quence alignment and
homology detection. In protein structure
prediction, HMMs were primarily used for
profile construction and fold recognition
[13]. Tools like HMMER and HHpred built
probabilistic models of MSAs, capturing
insertions, deletions, and muta- tions [14].

HMMs enabled sensitive detection of remote
ho- mologs, which are essential for accurate
template se- lection in homology modeling
[16]. These models also played a role in
domain annotation, transmembrane region
identification, and functional site prediction
[17].

Despite their widespread use, HMMs were
even- tually limited by their Markovian
assumptions and inability to capture long-
range or hierarchical depen- dencies. As a

Dilawar Khan*
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Hidden Markov Models inser- Homology detec- | Zhang and Xie, “DL 2021
Models (HMMs) tions/deletions in tion, fold in protein structure
?;{Sﬁ;{ uMs;ng Pro- | recogni- tion predic- tion” [13]
. . U SVMs, ..
Disorder Region losgei:_ tic regiession Predicting Alford et al., DL 2020
Predic-tion with disorder- flexible or models
related fea- unstructured pro- | for PSP” [16]
tures tein regions
Solvent Regression with Predicting local | Zhou and Liu, “’Protein 2020
Accessibility & sliding windows ) fold-ing and drug
) and kNN/SVM residue exposure | discovery” [15]
Torsion Angle models or phi/psi angles
Predic-tion
Template-Free Unsupervised Feature Li et al., ”Protein 2019
Embed-ding / learn-ing generation structure via DL [19]
Representation (e.g.autoen- coders, | From sequences
Learning early trans- .
formers) without MSAs
volves predicting whether pairs of residues contact maps to fold proteins using
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result, they have been increasingly
augmented or replaced by deep learning-
based profile models [18].

3.4 Disorder Region Prediction

Intrinsically disordered regions (IDRs) are
segments of proteins that lack a fixed 3D
structure under phys- iological conditions.
Predicting IDRs is important for
understanding protein flexibility, interaction
sites, and regulatory functions. ML-based
models, particularly logistic regression and
SVMs, were among the first to predict
disorder regions from primary sequence data
[14].

Feature sets for IDR prediction typically
include amino acid propensities,
physicochemical properties, hydrophobicity,
and evolutionary conservation. Tools like
IUPred and DISOPRED utilized such
features within ~ machine learning
frameworks to identify flexi- ble and
unstructured regions [17].

Recent advances incorporate deep recurrent
net- works and bidirectional LSTMs that
model sequential dependencies across the
full length of the protein, sig- nificantly
improving prediction of both short and long
disordered regions [13, 16]. These
predictions also feed into structure
refinement pipelines to prevent misfolding of
flexible loops or termini [19].

3.5 Solvent Accessibility and Torsion
Angle Prediction

ML models have also been applied to predict
residue- level properties such as solvent
accessibility and tor- sion angles (¢, ),
which provide fine-grained struc- tural
information useful for tertiary structure
predic- tion. Early models used regression
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techniques like SVM regression and k-
nearest neighbors (kNN) to predict
continuous values for these properties [16].

Tools such as SPINE-X and Real-SPINE
used neu- ral networks trained on sliding
window features to predict residue exposure
and backbone angles [18]. These predictions
helped constrain conformational search
spaces for tertiary structure prediction algo-
rithms.

Modern deep learning models for protein
structure prediction employ fully connected
and convolutional architectures trained end-
to-end to capture complex relationships
between amino acid sequences and their
three-dimensional structures. These models
are often implemented within multi-task
learning frameworks, predicting multiple
residue-level attributes simultane- ously,
such as secondary structure, solvent
accessibil- ity, torsion angles, disorder
regions, and contact maps [17, 13]. By
sharing learned representations across tasks,
multi-task models enhance generalization,
par- ticularly for proteins with limited
evolutionary infor- mation, and allow richer
internal feature extraction from sequence
data.

Incorporating physicochemical constraints
into modeling pipelines—such as solvent
exposure, tor- sion angles, and residue-
residue distances—improves both model
convergence and the physical plausibility of
predicted  structures [19]. Advanced
architectures, including residual networks,
graph neural networks, and transformer-
based attention models, capture long- range
dependencies and structural context, which
is crucial for predicting complex folds.
Furthermore, many models leverage
evolutionary information from multiple
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sequence alignments (MSAs) or embeddings
from pretrained protein language models,
providing  additional sequence-based
features that improve ac- curacy even for
proteins without close homologs. To- gether,
these strategies have significantly enhanced
the precision of computational protein
structure predic- tion, bringing it closer to
experimentally determined structures.

3.6 Template-Free Structural Embedding
and Representation Learning

In recent years, unsupervised and self-
supervised learn- ing methods have been
employed to learn structural embeddings
directly from large protein databases. These
models, inspired by natural language
process- ing (NLP), use architectures like
Transformers and masked language
modeling (MLM) to learn contextual
representations of protein sequences [6, 5].

VOLUME . 4 ISSUE . 2 (2025)

Models such as ESM (Evolutionary Scale
Modeling), ProtBert, and TAPE have shown
that pretraining on massive unlabeled
datasets allows these models to capture
structural and functional information implic-
itly [6, 5, 19]. Fine-tuning these
representations on downstream tasks like
secondary structure prediction, contact
prediction, or binding site prediction has led
to state-of-the-art results in many cases [11].

These learned embeddings serve as
generalized fea- ture extractors that
outperform hand-crafted features across
diverse prediction tasks. Moreover, such
embed- dings have been used to cluster
protein folds, discover new functional
domains, and even predict effects of point
mutations on structure and function [9, 10].

Table 4: Traditional vs ML-Based Approaches in Protein Structure Prediction

Approach

Limitations

Advantages

(Traditional)
Rule-based methods
lack global context capture sequence and
evolutionary dependencies

Secondary Struc-ture

(ML-Based)
ML (SVMs, RNNs)

Contact Maps

Co-evolution data is
sparse

CNNs combine features
for bet-ter long-range
prediction

Homology /Threading

Depend on high-identity | ML infers structure via
templates

sequence embed- ings

Disorder Re-gions

Poor generaliza-tion
from rules

DL improves prediction
for short and long disorder

Solvent Accessi-bility

Limited multi-output | Joint learning improves
regres-sion

struc-tural accuracy

HMMs / Profiles

Markov assump-tion
restricts context

Transformers model full
se-quence context

Representation Learning | Need MSAs or
handcrafted fea-tures

Self-supervised models
general-ize broadly
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4 Deep Learning-Based Approaches

The advent of deep learning (DL) has
revolutionized the field of protein structure
prediction (PSP) by enabling models to
autonomously learn complex, hi- erarchical
mappings from protein sequences to their
three-dimensional structures without the
need for ex- tensive manual feature
engineering. = DL architectures  are
particularly well-suited to PSP because they
can capture spatial, sequential, and long-
range depen- dencies within protein
sequences, which are essential for
understanding the intricacies of protein
folding [14, 19]. This section discusses key
DL approaches historically and currently

applied to PSP, highlight- ing their
architectures, strengths, limitations, and
biological impact.

4.1 Convolutional Neural Networks

(CNNs)

Convolutional Neural Networks (CNNs),
originally developed for computer vision
tasks, represent one of the earliest DL
architectures adapted for protein structure
prediction. CNNs excel at extracting hier-

convolutional filters, making them ideal for
analyzing spatially organized data such as
images. In PSP, protein features such as
contact maps, residue pairwise distance
matrices, or secondary structure elements
can be naturally repre- sented as 2D matrices,
allowing CNNs to learn spatial patterns
effectively [18, 20].

Initial applications of CNNs to PSP often
focused on secondary structure prediction,
where 1D CNNs were employed to capture
local sequential motifs within protein
sequences. By sliding convolutional filters
over one-dimensional amino acid sequences
or their associated profiles (such as position-
specific scoring matrices), CNNs learned to
identify characteristic se- quence patterns
that correlate with helices, sheets, or coils.
These approaches outperformed traditional
machine learning methods reliant on
handcrafted fea- tures due to the CNNs’
ability to learn discriminative
representations directly from raw input data
[15, 19]. Extending beyond one-dimensional
data, 2D CNNs were leveraged to predict
residue-residue  contact maps, which
represent the proximity between amino acid
pairs in the folded protein. By treating the

archical spatial

features

through

contact

Table 5: Comparison of Deep Learning (DL) Approaches in Protein Structure Prediction

(2019-2024)

DL Model ‘ Key Features ‘ Best Use Case Representative Study Year

https://journalofemergingtechnologyanddigitaltransformation.com
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Convolutional Detect local | Contact map and | Singh et al., ’DNNs for | 2020
Neural Networks | sequence  motifs | secondary Pro- tein Structure
(CNNs) and spatial features | structure Prediction” [17]
prediction

Recurrent Capture Residue Zhang and Xie, ”DL in| 2021

Neur | sequential embedding, Pro- tein Structure
al Networks dependencies via | secondary Prediction” [13]
(RNNs) LSTM/GRU structure
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End-to-End Predict 3D struc- | Full protein | AlQuraishi, ”End-to-End| 2019
Differen- tiable ture directly from | folding without | Dif- ferentiable
Models sequence or MSA | intermedi-  ate | Learning™ [4]
using steps
optimization
AlphaFold2 Evoformer block | High-accuracy | Jumper et al., 2021
with pair and | full structure | AlphaFold” [7]
structure module | prediction from
MSAs
RoseTTAFold Three-track Structure pre-| Baek et 2021
architec- ture | diction and al.,
(1D, 2D, 3D in- | protem—protein ”RoseTTAFold” [8]
tegration) interaction
model- ing
Graph Neural Residue/atom-level| Side-chain mod- | Alford et al., DL 2020
Net- works graph with eling, structure | Models for PSP” [16]
(GNN5s) message passing | refinement
Transformers Long-range Structure Rives et al., ”Scaling 2021
attention over | modeling and Unsuper- vised Learning”
sequences;  pre- | embeddings [6]
cursor to PLMs

map as a grayscale image, CNNs applied
spatial fil- ters to capture interaction patterns
between distant residues. Notably, networks
such as DeepCov and DNCON2 employed
multi-layer 2D CNNs to predict contacts
with improved accuracy, enabling better
con- straints for downstream folding
algorithms. These CNNs exploited local
spatial correlations, translation invariance,
and hierarchical feature learning to detect
subtle residue interactions critical for folding
[14, 18].

Subsequent advancements introduced 3D
CNNs that operate on volumetric
representations of protein structures or
fragment assemblies. These 3D CNNs can
directly model spatial coordinates and
atomic environments, allowing end-to-end
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learning of atomic interactions and
facilitating tasks like structure refine- ment
or loop modeling. Despite their promise, 3D

CNNs are computationally intensive and
require large amounts of structural data for
effective training [17]. However, CNNs face
challenges in modeling very long-range
dependencies intrinsic to protein folding,

where residues far apart in sequence form
close con- tacts in three-dimensional space.
While deeper CNNs and multi-scale
aggregation strategies partially miti- gate this
by increasing receptive fields, they
inherently rely on local neighborhood
operations, limiting their ability to capture
global context fully. This limitation
motivated the exploration of alternative
architectures such as recurrent neural
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networks and, more recently, transformers
[19].

Overall, CNNs laid the groundwork for DL
in PSP by effectively modeling local and
medium-range  struc-  tural  patterns,
improving prediction accuracy, and enabling

end-to-end learning from sequence-derived
features [14, 18].

4.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are
designed to process sequential data by
maintaining internal mem- ory states that
capture information from previous inputs.
Variants such as Long Short-Term Memory
(LSTM) networks and Gated Recurrent
Units (GRUs) were particularly popular for
biological sequences, in- cluding proteins,
because they can model dependen- cies over
varying lengths and are capable of learning
temporal or sequential relationships [19, 20].

In protein structure prediction, RNNs were
ini- tially employed to model the sequential
nature of amino acid chains, capturing long-
range dependencies where distant residues
influence folding and structural motifs.
Applications included predicting secondary
structures, disorder regions, and generating
sequence profiles or embeddings for
downstream tasks. For ex- ample, LSTM-
based networks were used to generate
context-aware residue representations by
integrating information from both N-
terminal and C-terminal di- rections
(bidirectional RNNs), improving predictions
of local structural features [14, 18].

Moreover, RNNs were explored for early

folding simulations and contact prediction by

treating residue pairs as sequence elements

and attempting to infer spa- tial relationships

through sequential processing. Their ability
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to  remember  contextual  sequence
information proved advantageous over
traditional  feed-forward net-  works,
particularly for capturing patterns extending
beyond local neighborhoods [15].

Despite these strengths, RNNs faced
fundamental limitations in PSP. The
vanishing and exploding gradi- ent
problems, while partially alleviated by
LSTM and GRU architectures, still hindered
learning over very long protein sequences.
Furthermore, their inherently sequential
nature makes parallelization challenging,
limiting scalability for large-scale datasets
and long sequences [19].

Most critically, RNNs are better suited to
linear sequential relationships and have
difficulty learning complex, global 3D
spatial relationships that are cen- tral to
protein folding. While they excel at model-
ing sequential dependencies, they do not
inherently encode the pairwise or higher-
order interactions be- tween residues needed
for accurate folding predictions [19, 20].

Consequently, the role of RNNs in state-of-
the-art PSP has diminished with the advent
of transformer architectures, which can
simultaneously attend to all sequence
positions and capture both local and global
dependencies more efficiently. Nevertheless,
RNNs contributed important foundational
insights into se- quence modeling in PSP and
remain useful in specific contexts, such as
sequence embedding generation or disorder
prediction [19].

4.3 End-to-End Differentiable Models

The most transformative advancement in
DL-based protein structure prediction (PSP)
has been the de- velopment of fully end-to-
end differentiable mod- els. These models
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learn to map raw amino acid sequences—and
often  multiple sequence alignments
(MSAs)—directly to three-dimensional
atomic coor- dinates. This is achieved by
jointly optimizing all components of the
prediction pipeline via backprop- agation.
Unlike traditional multi-stage systems that
rely on handcrafted intermediate features,
these mod- els integrate the entire process,
enabling them to learn hierarchical
representations and structural constraints in a
unified framework [4, 7].

4.4 AlphaFold and AlphaFold2

The introduction of AlphaFold by DeepMind
in 2018 marked a watershed moment for
PSP. AlphaFold em- ployed deep
convolutional neural networks to predict
distance distributions between residue pairs,
gener- ating a probabilistic representation of
inter-residue distances. These distance maps
were then converted into 3D coordinates
using  gradient-based  optimiza-  tion,
enabling accurate structure reconstruction.
Al- phaFold outperformed prior methods in
the CASP13 competition, demonstrating the
efficacy of DL-based distance predictions for
structure modeling [3, 7].

Building on this success, AlphaFold2,
released in 2020, introduced a radically
novel architecture  that integrated
transformers with innovative modules to
jointly model evolutionary, pairwise, and
spatial in- formation. Key components of
AlphaFold2 include:

e MSA Attention: This mechanism
extracts evo- lutionary relationships
from multiple sequence alignments,
allowing the model to identify con-
served and co-evolving residues that
inform fold- ing [7].
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e Evoformer Blocks: Deep neural
network mod- ules that iteratively refine
sequence and pairwise representations
through attention and communi- cation
between sequence and residue pair
features [7].

e End-to-End Structure Module: A
differen- tiable module that directly
predicts 3D atomic co- ordinates from
refined features, enabling gradient-
based training of the entire network [7].

AlphaFold2 abandoned the traditional two-
stage approach (predicting contacts or
distances followed by folding) in favor of a
unified end-to-end framework, enabling the
model to learn effective folding strategies
implicitly. This architecture achieved a
median Global Distance Test (GDTTS) score
of 92.4 at CASP14, rivaling the accuracy of
experimental methods and revolutionizing
the field [7, 10].

Importantly, AlphaFold2’s open-source
release and associated databases have
democratized access to high- quality
structure predictions, catalyzing advances in
biology, drug discovery, and protein
engineering [7, 13].

4.5 RoseTTAFold

RoseTTAFold, developed concurrently by
the Baker Lab, introduced an alternative
deep learning frame- work that employs a
distinctive three-track network architecture.
In contrast to AlphaFold2’s primarily
sequential ~ processing, = RoseTTAFold
processes infor- mation across three
interconnected tracks in parallel:

e 1D Sequence Track: Processing raw
amino acid sequences.
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e 2D Residue Pair Track: Capturing
pairwise relationships and spatial
constraints.

e 3D Coordinate Track: Responsible for
reason- ing about atomic spatial
arrangements ~ within  the  protein
structure.

Information flows bidirectionally between
these tracks, allowing the model to integrate
sequence, in- teraction, and geometry data in
a tightly coupled manner. This architecture
enables RoseTTAFold to reason jointly
about sequence context, residue inter-
actions, and three-dimensional structure,
improving  prediction accuracy and
efficiency [8].

RoseTTAFold  achieves  performance
comparable to AlphaFold2 but requires
significantly  fewer  compu-  tational
resources, making it accessible for broader
research applications. Moreover, its flexible
architec- ture has been successfully applied
to protein-protein interaction prediction and
de novo protein design, demonstrating
versatility beyond single-chain struc- ture
prediction [8].

4.6 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) have
emerged as powerful tools for modeling the
inherently graph- structured nature of
proteins, where residues or atoms are nodes
connected by edges representing chemical
bonds or spatial proximity. Unlike CNNs and
RNNs, which are restricted to grid-like or
sequential data, GNNs naturally operate on
irregular, non-Euclidean domains, making
them well-suited to capture complex
molecular interactions [14, 17].
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GNNs utilize message-passing frameworks,
wherein node features are iteratively updated
by aggregating information from their
neighbors. This enables the network to learn
relational information and depen- dencies
across the protein structure, capturing both
local and global topology. In PSP, GNNs
have been applied to:

e Predict residue-residue contacts or
distances by learning embeddings that
reflect spatial and chemical contexts
[14].

e Model side-chain packing and atomic
interactions for structure refinement
[17].

e Integrate sequence and structural data to
accu- rately predict protein-protein

interactions, im- proving the
understanding of molecular mecha-
nisms [17].

Graph convolutional networks (GCNs),
graph atten- tion networks (GATs), and their
variants have been explored, often combined
with other DL modules for end-to-end PSP
pipelines. For example, the GNN framework
of GVP-GNN integrates geometric vector
perceptrons to represent directional and
scalar fea- tures of atoms, enhancing 3D
structure understanding [17].

While promising, GNNs in PSP face
challenges re- lated to scaling with protein
size, requiring efficient graph construction
and sampling techniques. Nonethe- less,
GNNs complement transformer and CNN
archi- tectures by providing flexible spatial
relational rea- soning capabilities [14, 17].

4.7 Transformers and Attention
Mechanisms
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Transformers, introduced in natural language
pro-  cessing, utilize  self-attention
mechanisms to model pairwise dependencies
across entire sequences simul- taneously.
This contrasts with RNNs’ sequential pro-
cessing and CNNs’ local receptive fields,
enabling transformers to capture long-range
and global inter- actions efficiently [10, 11].

In PSP, transformers are employed to:

e Extract evolutionary and structural
features from  multiple sequence
alignments (MSAs) by attend- ing to co-
evolving residues [7, 10].

e Model protein language representations
that im- plicitly capture structural
constraints from large protein sequence
databases [11, 13].

e Serve as backbone architectures for end-
to-end PSP models such as AlphaFold2,
which integrate transformer blocks (e.g.,
Evoformer) for refined feature extraction

[7].

Recent  developments have adapted
transformers to handle protein-specific
challenges, such as encod- ing three-
dimensional geometric information through
geometric attention or integrating spatial
positional encodings. Protein language
models (PLMs) based on transformers,
trained on millions of sequences, pro- vide
embeddings that can be fine-tuned for PSP
and other downstream tasks, improving
generalization to novel proteins [11, 13].

Transformers’ scalability and
parallelizability facili- tate training on
massive protein datasets, contributing to
continual improvements in PSP accuracy and
effi- ciency. Their flexibility allows
integration with other DL components like
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GNNs or CNNSs, enabling hybrid models that
leverage complementary strengths [7, 13].

S Protein Language Models (PLMs)

Protein Language Models (PLMs) represent
a trans- formative application of natural
language process- ing (NLP) methodologies
to biological sequences. By treating protein
sequences as “biological sentences,” PLMs
exploit the power of large-scale self-
supervised learning to capture latent
representations encoding structure, function,
and evolutionary context directly from raw
amino acid data. Unlike traditional mod- els
that require handcrafted features or multiple
se- quence alignments (MSAs), PLMs learn
contextual embeddings from vast corpora of
unlabeled sequences, enabling versatile
applications across bioinformatics [5, 6].

5.1 ProtBERT

ProtBERT 1s an adaptation of the
Bidirectional En- coder Representations
from Transformers (BERT) ar- chitecture,
specialized for protein sequences [5]. Us- ing
masked language modeling (MLM),
ProtBERT 1is pretrained on millions of
protein sequences from large databases such
as UniProt, where the task in- volves
predicting masked amino acids based on
their bidirectional context within sequences.
This enables the model to learn nuanced
representations that en- code biochemical
properties, evolutionary conserva- tion, and
even structural motifs.

The primary advantages of ProtBERT
include:
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can be fine-tuned for a diverse array of
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downstream tasks,

Table 6: Comparison of Protein Language Models (PLMs) in Protein Structure Prediction
(2019-2024)

PLM Model ‘ Key Features ‘ Best Use Case Representative Study Year

ESM-1b Transformer Learning embed- | Rives et al., ’ESM-1b: 2021
trained on | dings for struc-| Unsu- pervised Learning”
UniRef50  with | ture/function [6]
masked language
modeling
ProtBERT Based on BERT | Sequence-based | Elnaggar et al., 2021
ar- chitecture | pro- tein ”Prot- Trans”
trained on | representation [5]
UniRef100 for multiple tasks
ESMFold End-to-end Fast Lin et al., ’JESMFold” 2023
folding using pre- structur | [9]
trained ESM PLM | e prediction
without MSAs
ProteinBERT Combined MLM | Multi-task Brandes et al., 2022
and GO | general- purpose ”Protei
annotation tasks | protein rep- | n- BERT” [21]
during training resentations
AlphaFold- Integrates PLM | Joint modeling | Jumper et al., 2021
Evoformer with attention | of structure from | ”AlphaFold with PLMs”
PLMs blocks in | sin- gle | [7]
AlphaFold2-like | sequences
setup
MSA- Models co-| Contact map | Rao et al., "MSA 2021
Transformer evolutionary pat- | predic- tion and | Trans- former” [22]
terns from MSAs | sequence
using axial | alignment
attention encoding
ESM-2 Scaled Embedding Meier et al., ’ESM-2” 2023
transformer PLM | genera- tion, | [23]
trained on large | zero-shot func-
sequence corpora | tion prediction
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such as secondary structure prediction,
subcellu- lar localization, post-translational
modification site prediction, and protein-
protein interaction inference. This versatility
stems from the rich contextual knowledge
captured during pretrain- ing [5].

e Generalization Without MSAs: Unlike
clas- sical methods that rely heavily on
MSAs to infer evolutionary constraints,
ProtBERT  captures im-  plicit
evolutionary and structural signals from
individual sequences. This capability
allows it to generalize to novel or orphan
sequences lacking homologs [6].

Empirical studies have demonstrated that
Prot- BERT embeddings outperform
handcrafted features and shallow models in
tasks ranging from fold clas- sification to
functional annotation [5]. Furthermore,
ProtBERT accelerates protein analysis
pipelines by removing the computationally
intensive step of MSA construction.

Despite  these strengths, ProtBERT’s
performance still depends on the quality and
diversity of the train- ing dataset, and it
requires substantial computational resources
for pretraining and fine-tuning. Nonethe-
less, it represents a major advance in
leveraging  transformer-based language
models in structural bioin- formatics [5, 6].

5.2 ESMFold

ESMFold, developed by Meta Al, marks a
significant advance in PLM-driven protein
structure prediction [9]. Unlike traditional
approaches that depend on MSAs and
homology information, ESMFold uses large-
scale pretrained language models (notably
ESM-2) to predict 3D atomic coordinates
directly from primary sequences. This
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capability is transformative for ana- lyzing
metagenomic or novel sequences with
limited evolutionary context.

Key characteristics of ESMFold include:

e MSA-Free Prediction: By leveraging
the rich internalized representations
from the ESM lan- guage model,
ESMFold bypasses the MSA step
entirely, enabling rapid predictions on
large-scale or difficult-to-align sequence
datasets [9].

e Self-Supervised Pretraining: ESMFold
bene- fits from self-supervised learning
on massive pro- tein sequence databases,
which imbues the model with implicit
knowledge of structural and func- tional
constraints [6].

e Speed and Scalability: ESMFold can
predict protein structures orders of
magnitude faster than traditional MSA-
based methods, facilitating high-
throughput applications [12].

ESMFold’s success demonstrates that PLMs
cap- ture sufficient structural cues from
sequence alone, enabling accurate fold
prediction without explicit evo- lutionary
data. This opens new frontiers for structural
genomics, synthetic biology, and protein
engineering, particularly for novel or
engineered proteins [9, 12].

5.3 Self-Supervised Learning in PLMs

Self-supervised learning (SSL) strategies
underpin the remarkable success of PLMs.
SSL involves defining surrogate prediction
tasks from unlabeled data, en- abling models
to learn meaningful representations without
explicit annotations. Common SSL methods
in protein modeling include:
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Masked Token Prediction: Randomly
mask- ing amino acids in sequences and
training the model to predict the missing
residues forces learn- ing of local and global
context, akin to BERT in NLP [5].

e Auto-Regressive Modeling:
Sequentially pre- dicting the next amino
acid given previous residues, as in GPT-
style models, encodes sequen- tial
dependencies and biochemical
constraints [6].

e Contrastive Learning: Encouraging
models to differentiate between similar
and dissimilar se- quences or sequence
segments  facilitates  learning  of
discriminative embeddings capturing
evolution- ary or structural similarity [6].

These SSL methods enable PLMs to
internalize the “grammar” of protein
sequences—understanding which residues
co-occur, motifs that indicate struc- tural
elements, and evolutionary constraints—
without direct supervision. This
fundamentally shifts protein modeling
paradigms away from dependence on cu-
rated labels or structural templates [5, 6].

5.4 Additional PLM Approaches

Beyond ProtBERT and ESMFold, a growing
ecosys- tem of PLMs explores novel
architectures and training regimes to
enhance protein sequence representation:

ProteinBERT: ProteinBERT integrates
protein- specific inductive biases with
transformer architec- tures. It incorporates
evolutionary information via pretraining on
sequence alignments and leverages multi-
task objectives, improving its ability to pre-
dict diverse properties such as binding
affinity and enzymatic activity.
ProteinBERT has demonstrated that task-
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aware pretraining improves downstream
pre- dictive performance [11].

TAPE (Tasks Assessing Protein
Embeddings): TAPE is a benchmark suite
and set of models de- signed to
systematically evaluate PLMs across multi-
ple protein prediction tasks. The models,
including transformer, LSTM, and CNN-
based architectures, provide insights into the
best architectures and train- ing strategies for
protein modeling [17].

ESM-1b and ESM-2: The Evolutionary
Scale Modeling (ESM) series further scaled
protein lan- guage models with billions of
parameters, leveraging training on over 250
million sequences. ESM mod- els emphasize
transformer  scalability,  self-attention
mechanisms, and incorporate structural
supervision to enhance embeddings for
structure and function prediction [6, 9].

6 Reinforcement Learning and Itera- tive
Refinement

While supervised and self-supervised
learning meth- ods have become the
cornerstones of protein structure prediction
(PSP), reinforcement learning (RL) offers a
complementary and promising framework
for tack- ling the inherently dynamic and
sequential nature of protein folding and
design. RL models the pro- tein folding
process as a sequential decision-making
problem, where an agent learns to explore
the wvast conformational landscape to
optimize structural out- comes based on
reward signals. This section explores key
RL-based approaches, including folding
simula- tion, de novo protein design,
iterative refinement tech- niques, and
emerging trends in combining RL with deep
learning for PSP.
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6.1 Folding Simulation Using networks (deep RL) and sophisticated

Reinforcement Learning

Protein folding is a highly complex,
stochastic pro- cess in which a linear amino
acid sequence transi- tions through
numerous intermediate conformations to
reach a stable native structure. Traditional
physics- based simulations (e.g., molecular
dynamics) are com- putationally expensive
and often infeasible for large proteins. RL
offers an alternative by formulating fold- ing
as a Markov Decision Process (MDP), where
an agent incrementally modifies the protein
conformation in discrete steps.

In this framework, the state space represents
the current conformation, the actions
correspond to local structural modifications
(such as torsion angle rota- tions or fragment
replacements), and the reward func- tion
encodes how well the predicted structure
aligns with biophysical criteria like energy
minimization, compactness, or proximity to
known native structures. Through trial and
error, the RL agent learns a policy that
maximizes cumulative rewards, effectively
guid- ing folding pathways toward native-
like conformations [11].

Initial RL-based folding simulators
demonstrated the potential to generate
folding trajectories that cap- ture key
intermediates and folding kinetics, offering
mechanistic insights beyond static structural
snap- shots. For example, Monte Carlo tree
search com- bined with RL has been used to
explore conforma- tional space efficiently.
However, challenges remain due to the
enormous state and action spaces, requiring
function approximation with deep neural

exploration strategies to avoid local minima.

6.2 Reinforcement Learning for De
Novo Pro- tein Design

De novo protein design involves creating
novel se- quences that fold into desired
three-dimensional struc- tures with specific
functional properties, such as ligand binding
or enzymatic activity. Traditional design ap-
proaches rely on energy-based heuristics and
exhaus- tive search, which can be
computationally prohibitive and limited in
scope.

RL offers a powerful paradigm by treating
sequence  generation and  structure
optimization as a sequential decision
process, where the RL agent learns policies
to select amino acids or motifs step-by-step,
guided by reward functions encoding
structural stability, fold- ing propensity, and
functional constraints [11]. The agent’s goal
is to generate sequences predicted to fold
into stable, functional proteins, optimizing
multiple competing objectives
simultaneously.

Recent studies utilize policy gradient
methods, actor-critic algorithms, and deep
Q-learning to op- timize protein sequences in
silico. These RL agents can incorporate
feedback from physics-based scoring
functions, machine learning predictors of
folding suc- cess, or experimental assay data,
enabling iterative improvement.
Reinforcement learning also facilitates the
design of proteins with non-natural folds or
func- tions by exploring novel sequence-
structure landscapes

Table 7: Comparison of Deep Learning (DL) Approaches and Protein Language Models
(PLMSs) in Protein Structure Prediction
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Aspect DL Approaches PLMs
Input Type Require MSAs or structural Use raw sequences directly; do
templates (e.g., from databases) not require MSAs or templates
Feature Learning Supervised learning from Self-supervised learning from
labeled struc- ture/function massive unla- beled protein
datasets sequences
Training Cost High due to MSA generation High pretraining cost but
and model complexity inference is fast and scalable
Inference Speed Slow, especially with MSA or Fast, suitable for large-scale
template gen- eration protein screen- ing
Generalization Poor generalization for orphan| Excellent generalization to unseen
or no- homolog proteins or novel proteins
Modularity Architectures are often task- Embeddings reusable across
specific diverse tasks
Transferability Limited transfer across tasks or | High transferability to structure,
domains function, and localization tasks
Examples AlphaFold2, RoseTTAFold, ProtBERT, ESMFold, ESM-
CNNs, GNNs 1b/2, Protein- BERT
Use Cases High-accuracy folding Rapid analysis, metagenomics,
(with functional annotation, screening
MSAs/templates)

maccessible to classical methods.

6.3 Iterative Refinement Strategies
Inspired by Reinforcement Learning

While models such as AlphaFold2 do not
explicitly employ RL, their iterative
refinement techniques share conceptual
parallels with RL principles. AlphaFold2’s
architecture employs repeated cycles of
structure pre- diction and evaluation,
progressively refining atomic coordinates to
improve structural accuracy [16].

This iterative process can be viewed as
analogous to a policy improvement loop,
where each refinement step corresponds to
taking an action in a state (current predicted
structure), receiving feedback (loss/error
signals), and updating the policy (neural
network pa- rameters) to yield better
predictions. Such feedback- driven iterative
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updates reduce errors incrementally,
mimicking the trial-and-error learning of RL
agents. Inspired by this, some recent methods
explicitly integrate RL into refinement
stages, allowing mod- els to explore
conformational space more adaptively. For
example, reinforcement learning algorithms
have been proposed to optimize side-chain
packing, back-bone adjustments, and
flexible loop modeling, comple- menting
gradient-based optimization with strategic
exploration.

6.4 Hybrid Models Combining Deep
Learning and Reinforcement Learning

A promising frontier in PSP is the integration
of deep learning (DL) with reinforcement
learning to harness the strengths of both
paradigms. Deep RL models use neural
networks to approximate complex policies
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and value functions over high-dimensional
protein conformational spaces.

Hybrid approaches often use pretrained DL
models to provide rich feature embeddings or
structural pri- ors, which guide RL agents in
decision-making. For example, deep RL
agents can operate in latent spaces learned by
variational autoencoders (VAEs) or protein

language models, dramatically reducing the
search space complexity.

In such models, the RL component can focus
on optimizing specific objectives like
maximizing binding affinity or minimizing
free energy, while the DL com- ponents
provide accurate state representations and

Table 8: Comparison of Reinforcement Learning and Iterative Refinement Methods in
Protein Structure Prediction (2019-2024)

Method/Model ‘ Key Features ‘ Best Use Case Representative Study Year

DRLComplex Deep Protein complex | Geng et al., 2021
reinforcement structure "DRLComplex: RL for
learning for prediction  via | docking” [24]
docking interface scoring

QDeep Quality Selecting/refinin | Uziela et al., "QDeep: 2018
assessment using | g high-quality Q
Q-learning  with | struc- tural - learning for QA™ [25]
atomic  environ- | models
ment features

RL-Refine Reinforcement Step-wise Bai et al., ’RL-Refine” | 2022
learn- ing with | correction of | [26]
iterative structure | predicted  struc-
correction tures
feedback

RASP Integrates High-accuracy Wu et al., "RASP: 2022
iterative structure Refinement guided
refinement with | prediction from | prediction” [27]
Al- phaFold’s | few templates
Evoformer

ATOMRefine Graph-based Side-chain  and | Wu et al., 2022
refine- ment of 3D | back- bone atom | ’ATOMRefine” [28]
atomic co- | adjust- ments
ordinates

FEAR Physics-informed | Combines Jing et al., "FEAR: 2023
en- ergy | physics priors | Force- based
adjustment via| with DL for | refinement” [29]
refinement loop final prediction
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GNNRefine GNN-based Geometric Jin et al., ”"GNNRefine” | 2022
iterative refine- ment of | [30]

correction  with | coarse
atomic upervision | predictions

reward estimations. This synergy accelerates
conver- gence and improves the quality of
predicted structures or designed sequences.

Reinforcement learning models the protein
fold- ing process as a sequential decision-
making problem, where an agent learns to
explore the vast conforma- tional landscape.

7.1 Challenges and Future Directions in
Tra- ditional Computational Approaches

Traditional methods based on physics and
knowledge- based potentials face difficulties
scaling to large, com- plex proteins due to
computational costs and inaccu- racies in
energy functions [1, 2, 16]. Future research

must improve force fields and sampling
algorithms  to  better  capture  the
conformational landscape, espe- cially for
membrane proteins and protein complexes.
Integrating experimental constraints such as
cryo-EM  or NMR data into these
frameworks could enhance accuracy and
applicability [10].

7 Challenges and Future Directions

Despite significant progress in protein
structure pre- diction (PSP), several key
challenges  remain  across  different
methodological paradigms. Addressing these
issues will be critical to advancing the field
and broad- ening the scope of biological
applications.

Table 9: Comparison of PLMs With Reinforcement Learning and Iterative Refinement
Approaches in Protein Structure Prediction

Protein Language Models

Reinforcement Learning &
(PLMs) Iterative Refinement
Capture global structure
statistically but do not simulate
folding dynamics

Folding Process
Modeling

Simulate folding as a sequential
decision process with intermediate
state transi-tions

Adaptability and Fixed embeddings after Learns through trial-and-error with

Feed-back pretraining; no feedback during struc-tural rewards for adaptive
inference improvement

Granular Structural Limited control over atomic details| Enables fine-tuned control of

Con- (e.g., torsion angles or side-chain | specific structural properties and

trol packing) constraints

Exploration and Generalize from training data but | Actively explore novel folds and
Design strug-gle with novel or de novo

Space Coverage sequences

design solutions through reward-
driven search
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Multi-Objective Opti- | Single-task focused unless fine- | Naturally supports optimization
mization tuned;lacks native multi-objective | over mul-tiple objectives via

handling

reward shaping

Refinement Capability

One-shot structure generation

Iteratively refines predictions to

without iterative corrections

improve structural quality and
convergence

When to Use

without MSAs

Fast, accurate predictions for
known or homologous sequences

Best for design tasks, folding

where feedback is
critical

7.2 Challenges and Future Directions in
Ma- chine Learning-Based Approaches

Machine learning models have improved
PSP accuracy but still require extensive
feature engineering and of- ten rely on
handcrafted representations [14, 13]. They
generally struggle to capture long-range
interactions and 3D structural context.
Future efforts should fo- cus on hybrid
models that combine machine learning with
physical principles to improve
interpretability and generalizability.
Additionally, expanding training datasets
with diverse protein families and incorporat-
ing  evolutionary  information  more
effectively remain important challenges [18].

7.3 Challenges and Future Directions in
Deep Learning-Based Approaches

Deep learning models such as CNNs, RNNs,
and trans- formers have revolutionized PSP
by learning rich rep- resentations from
sequences and multiple sequence alignments
(MSAs) [3, 7, 8, 14]. However, challenges
include:

e Modeling dynamics and flexibility:
Most DL models predict static
structures, but proteins are dynamic
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molecules whose functions depend on
conformational changes.

e Dependence on MSAs: Many top-
performing models require high-quality
MSAs, which are unavailable for orphan
or metagenomic sequences.

e  Computational cost: Large DL models

de- mand substantial computational
resources and training data.

Future research should aim to develop end-
to-end frameworks that incorporate protein
dynamics and environmental context,
improve  efficiency  through  model
compression and transfer learning, and
reduce reliance on MSAs using single-
sequence-based meth- ods [9, 12, 13].

7.4 Challenges and Future Directions in
Pro- tein Language Models (PLMs)

PLMs capture implicit biological grammar
from raw sequences without explicit
supervision, but several issues remain [5, 6,
9]:

e Interpretability: Understanding how
PLMs en- code structural and functional
features remains limited, complicating
biological insight extrac- tion.
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e Integration with experimental data:
Com- bining PLM embeddings with
experimental struc- tural data could
improve prediction fidelity.

e Scaling and generalization: Although
trained on millions of sequences, PLMs
still face chal- lenges in generalizing to
rare or novel protein folds.

Future directions include developing
multimodal models that integrate sequence,
structure, and func- tional annotations,
improving interpretability via at- tention
visualization and probing, and extending
PLMs to predict protein interactions and
dynamics [5, 9, 19].

7.5 Challenges and Future Directions in
Re- inforcement Learning and Iterative
Re- finement

RL approaches provide a natural framework
for simu- lating folding pathways and
designing novel proteins but are still in early
stages [11, 15]. Key challenges include:

e High-dimensional action space: The
confor- mational space of proteins is
enormous, making RL exploration
computationally demanding.

e Reward design: Defining meaningful
and ef- ficient reward functions that
capture stability, functionality, and
biophysical constraints remains difficult.

e Integration with other methods:
Combining RL with DL-based static
prediction models to enable dynamic
folding simulations and design pipelines
is an open challenge.

Future work should focus on improving
sample effi- ciency through better
exploration strategies and hier- archical RL,
incorporating physics-based constraints into
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the reward framework, and developing
hybrid systems that integrate iterative
refinement with RL- inspired optimization
for enhanced accuracy and de- sign
capability [7, 11].

7.6 Cross-Cutting Future Directions

Across all approaches, several broader
challenges and opportunities stand out:

e Model interpretability: Enhancing
trans- parency and explainability will be
critical for biological validation and
acceptance.

e Handling data scarcity: Developing
methods robust to limited or noisy data,
especially for underrepresented protein
families.

e Multiscale modeling: Bridging atomic-
level detail with cellular and system-level
understand- ing remains an open frontier.

e Integration with experimental
workflows: Close synergy with high-
throughput experimental techniques will
accelerate validation and discov- ery.

The  confluence of advances in
computational power, algorithms, and data
availability promises a future where protein
structure prediction not only reaches atomic
accuracy routinely but also captures
functional dynamics and informs protein
engineering and drug discovery.

8 Conclusion

Protein structure prediction has witnessed a
paradigm shift, evolving from early heuristic
and physics-based models [1, 2] to advanced
machine learning and Al- driven approaches
that achieve unprecedented accu- racy [3, 7].
The rise of deep learning techniques, in-
cluding convolutional neural networks,
transformer ar- chitectures, and protein
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language models, has dramat- ically
improved the ability to infer complex
sequence- structure relationships [5, 6, 9].
Reinforcement learn- ing (RL), while still
emerging in this field, offers a powerful
framework to model the dynamic, sequen-
tial nature of folding and enable innovative
protein  design  strategies [11, 15].
Furthermore,  iterative re-  finement
techniques exemplified by AlphaFold?2 illus-
trate how repeated prediction-evaluation
cycles can substantially enhance structural
accuracy, bridging supervised learning with
RL-inspired optimization [7, 8].

Despite these advances, several challenges
persist. Modeling protein dynamics and
folding pathways at atomic resolution
remains difficult due to the wvast
conformational landscape and computational
costs [16]. Predicting structures of
membrane proteins and multi-protein
complexes poses additional complex- ity,
often hindered by limited experimental data
[10]. Accurately capturing protein-ligand
interactions and conformational flexibility is
crucial for understanding biological function
and drug design but remains an open
challenge [12].

The future of protein structure prediction will
likely involve integrative approaches that
combine physics-based simulations,
machine learning, and high- throughput
experimental data [14, 19]. Leveraging re-
inforcement learning for dynamic folding
simulations and de novo protein design,
alongside deep learn- ing for static structure
prediction, holds promise to unlock new
frontiers in synthetic biology and ther-
apeutics [4, 11, 15]. The continued
development of interpretable, scalable, and
data-efficient models will be essential to
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translate computational advances into
biological insights and practical applications.

In summary, the convergence of diverse
computa- tional methodologies and growing
biological datasets heralds a transformative
era in understanding and engineering
proteins, with broad implications across
medicine, biotechnology, and fundamental
biology.
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