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Abstract: 

Protein structure prediction (PSP) remains one of the most challenging and impactful problems 

in computa- tional biology. This review systematically examines the evolution of PSP 

methodologies, from traditional computational approaches to cutting-edge deep learning 

techniques. We begin with classical methods such as homology modeling and molecular 

dynamics, then explore machine learning-based approaches including neural networks and 

protein language models. Special emphasis is placed on revolutionary deep learning 

architectures like AlphaFold2 and RoseTTA Fold, which have achieved remarkable accuracy 

in recent CASP competitions. We also discuss emerging directions in reinforcement learning 

for protein folding simulation and design. Throughout the review, we highlight key biological 

insights, computational innovations, and remaining challenges in the field. 
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Introduction 

ROTEINS serve as fundamental 

macromolecules within living organisms, 

playing pivotal roles in virtually every 

biological process. From catalyzing 

metabolic reactions to maintaining structural 

integrity, their functionality is both vast and 

vital. The cor- nerstone of this diverse 

functionality lies in the three- dimensional 

(3D) structure of proteins, determined by 

their amino acid sequences.[1] This 

sequence-structure relationship forms the 

essence of the ”protein fold- ing problem,” a 

longstanding challenge in molecular 

biology.[2] 

The importance of solving this problem 

cannot be overstated, with implications 

spanning drug discovery, enzyme 

engineering, and disease mechanism studies 

[3]. Misfolded proteins are implicated in 

numerous diseases including Alzheimer’s 

and Parkinson’s [4], making accurate 

structure determination essential for 

biomedical research. 

Historically, three experimental techniques 

have dominated protein structure 

determination: 

• X-ray crystallography (high resolution 

but re-quires crystallization) [5] 

• NMR spectroscopy (solution studies but 

limited to small proteins) [6] 

• Cryo-EM (powerful for large complexes 

but resource-intensive) [7] 

Due to these limitations, computational PSP 

meth- ods have become increasingly crucial. 

The widening gap between known sequences 

(UniProt) and solved structures (PDB) 

underscores the need for reliable 

computational prediction methods [8]. 

Prior to the deep learning revolution in 

protein structure prediction, foundational 

methods such as the Chou–Fasman algorithm 

[1], GOR method [2], and early homology 

modeling efforts laid the ground- work for 

structural bioinformatics. A comprehensive 

pre-deep learning review can be found in 

[20], which summarizes approaches before 

2019. These early mod- els, although limited 

in accuracy and scalability, intro- duced core 

concepts in residue prediction, statistical 

potentials, and comparative modeling that 

remain relevant today 

2.   Traditional Computational Methods 

The emergence of computational protein 

structure prediction stemmed from the 

recognition that experi- mental methods, 

although precise, are often slow and resource-

intensive. Techniques such as X-ray crystal- 

lography and nuclear magnetic resonance 

(NMR) spec- troscopy, while capable of 

delivering high-resolution structures, cannot 

keep up with the rapidly expanding volume of 

protein sequence data generated by modern 

high-throughput sequencing. To address this 

dispar- ity, researchers developed traditional 

computational strategies based on established 

biological knowledge and fundamental 

physical principles. These meth- ods aimed to 

provide approximate yet useful struc- tural 

insights, relying on information such as 

sequence homology, evolutionary 

conservation, and energetics. Traditional 

approaches—such as homology modeling, 

protein threading, and ab initio prediction—

laid the essential groundwork that enabled the 

emergence of more sophisticated machine 
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learning and deep learn- ing models in recent 

years. 

2.1   Homology Modeling 

Homology modeling, also known as 

comparative mod- eling, is predicated on the 

evolutionary concept that proteins with 

similar sequences tend to adopt similar 

structures. This methodology involves 

aligning a tar- get protein sequence to one or 

more template proteins with known structures 

and then constructing a 3D model based on 

this alignment. 

The process of homology modeling generally 

in- volves four major steps: template 

identification, se- quence alignment, model 

building, and model vali- dation. Template 

identification relies on searching databases of 

experimentally solved structures, such as the 

Protein Data Bank (PDB), to find suitable 

templates sharing significant sequence 

similarity. Se- quence alignment is a critical 

step where the target and template sequences 

are aligned, ensuring homol- ogous residues 

correspond spatially. Tools such as 

MODELLER automate the model-building 

process, which generates atomic coordinates 

for the target based on the aligned template 

structures [14, 16]. 

Homology modeling excels when the 

sequence iden- tity between the target and the 

template exceeds 30%, allowing accurate 

inference of the backbone confor- mation and 

side-chain packing. However, its accuracy 

diminishes significantly in the so-called 

”twilight zone” (sequence identity below 

30%), where alignment errors and structural 

divergence limit reliability [15]. More- over, 

homology models often inherit the 

imperfections and missing residues present in 

the template struc- tures, especially in flexible 

loop regions or disordered segments, which 

are challenging to model accurately. Despite 

these drawbacks, homology modeling 

remains a cornerstone technique due to its 

efficiency and rela- tive accuracy when 

suitable templates exist. 

2.2   Threading (Fold Recognition) 

Threading, also called fold recognition, was 

developed to tackle cases where sequence 

similarity is too low to identify homologous 

templates but where structural similarity 

might still exist. Unlike homology modeling, 

threading methods attempt to ”thread” the 

target sequence onto a library of known 

protein folds and evaluate how well the 

sequence fits each fold based 

Table 1: Comparison of Traditional Protein Structure Prediction Approaches (2019–2024) 

Method Key Features Best Use 

Case 

Example Paper 

(Citation) 

Year 

Homology 

Modeling 

Uses known structure 

templates with high 

sequence identity 

Sequence 

identity > 30% 

Zhang and Xie, ”Deep 

learning in protein 

structure pre-diction” [13] 

2021 

Threading 

(Fold 

Recognition) 

Aligns  sequence  to 

known folds; works 

with low identity 

Remote  

homology 

detection 

Zhou and Liu, 

”Understand-ing protein 

folding...” [15] 

2020 

Ab Initio 

Modeling 

No template required; 

energy minimization 

Small proteins 

(<100 

Singh et al.,”Advances 

in deep neural 

2020 
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residues) networks...” [17] 

Fragment 

Assembly 

Reconstructs protein 

from known frag-ments 

Medium-

length pro-

teins with 

unknown 

fold 

Nguyen et al., ”Review 

using deep learning” [18] 

2020 

Loop 

Modeling 

Predicts flexible loop 

regions 

Gaps in 

templates or 

active site 

mod-eling 

Alniss et al., ”ML 

models for PSP” [14] 

2020 

Side-Chain 

Modeling 

Optimizes side-chain 

conformations using 

rotamers 

Enzyme 

active sites or 

interface 

model-ing 

Alford et al., ”Deep 

learning models for 

PSP” [16] 

2020 

Molecular 

Dynamics 

(MD) 

Refines structure using 

physical simulations 

Local 

refinement, 

Conformation

al flexibility 

Li et al., ”From 

sequence to structure” 

[19] 

2019 

Hybrid 

Methods 

(e.g., I-

TASSER) 

Combines threading, ab 

initio, refinement 

Targets with 

weak 

templates 

Jumper et al., 

”AlphaFold accuracy” [7] 

2021 

On physicochemical and structural 

compatibility [17]. This approach uses 

scoring functions that incorpo- rate residue 

environment, secondary structure propen- 

sity, solvent accessibility, and residue-residue 

contact potentials to assess the fitness of the 

sequence in a particular fold. Methods like 

Phyre2 and MUSTER apply sophisticated 

threading algorithms to detect remote 

homologs and recognize folds even without 

detectable sequence similarity. 

Threading is especially valuable for proteins 

lack- ing close homologs with known 

structures, expanding the coverage of 

structural prediction. However, its accuracy 

heavily depends on the quality of the scoring 

functions and the completeness of the fold 

library. In- correct scoring or absence of the 

correct fold template in the database can lead 

to erroneous fold assignment [14]. 

2.3Ab Initio (De Novo) Modeling 

Ab initio modeling aims to predict protein 

structures without relying on homologous 

templates, based solely on physicochemical 

principles and thermodynamics. It attempts to 

identify the lowest free-energy confor- 

mation of a protein sequence by sampling the 

vast conformational space accessible to the 

polypeptide chain [19]. 

The central challenge of ab initio modeling 

lies in the astronomical size of this 
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conformational space — a dilemma known as 

Levinthal’s paradox. To overcome this, 

methods like Rosetta utilize fragment assem- 

bly approaches, sampling small peptide 

fragments ex- tracted from known structures 

and assembling them into full-length models 

guided by energy functions [16]. 

While ab initio methods have shown success 

in accu- rately predicting small protein folds, 

their applicabil- ity to larger proteins is 

limited due to computational complexity and 

the difficulty of accurately modeling long-

range interactions. Nonetheless, ab initio 

prin- ciples have driven improvements in 

energy functions and sampling strategies. 

2.4   Fragment Assembly 

Fragment assembly is a hybrid technique that 

simpli- fies the folding problem by dividing it 

into manageable subproblems. It involves 

selecting short structural fragments from a 

library of known protein structures that match 

segments of the target sequence. These 

fragments are then assembled into complete 

structures using stochastic sampling 

algorithms [12, 16]. 

This method reduces the complexity of 

conforma- tional sampling by constraining 

possible backbone conformations to those 

observed in solved structures. Tools such as 

Rosetta have demonstrated remarkable 

success using fragment assembly, especially 

for small to medium-sized proteins. 

2.5   Knowledge-Based Potentials 

Knowledge-based potentials are derived by 

analyzing the frequencies of residue-residue 

interactions, dis- tances, and angular 

relationships in protein struc- tures. These 

statistical observations are translated into 

scoring functions used to evaluate model 

quality [19, 18]. 

Common examples include DFIRE, DOPE, 

and sta- tistical pairwise contact potentials. 

These are widely used for model validation 

and structure refinement. 

2.6   Loop Modeling 

Loops are flexible protein regions connecting 

sec- ondary structures. Accurate modeling of 

loops is crucial for functional relevance, 

especially in homology models. Loop 

modeling uses both database searches and ab 

initio sampling to find conformations 

compat- ible with flanking regions [15, 19]. 

2.7   Side-Chain Modeling 

Side-chain modeling aims to place amino 

acid side chains onto a fixed backbone using 

rotamer libraries. 

Tools use energy functions and optimization 

algo- rithms such as Monte Carlo or dead-end 

elimination for this task [19]. 

This modeling is especially important for 

detailed studies of enzyme active sites or 

docking simulations [17]. 

2.8   Molecular Dynamics Simulations 

Molecular dynamics (MD) simulates atomic 

motions over time using Newtonian 

mechanics. MD is pri- marily used for 

refining protein models by allowing 

relaxation to energetically favorable states 

[15, 10]. 

Due to computational intensity, MD is often 

limited to local refinement but is valuable for 

studying protein dynamics and validating 

predicted models. 
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2.9   Hybrid Approaches 

Hybrid methods combine various modeling 

techniques to enhance prediction accuracy. 

For example, I- TASSER uses threading, 

fragment assembly, and structural 

refinement. These systems exploit the 

strengths of multiple methodologies while 

minimizing individual weaknesses [8, 7, 3]. 

Hybrid approaches are now standard in 

structural prediction pipelines and have been 

instrumental in community challenges like 

CASP [10, 14]. 

3   Machine Learning Approaches 

The advent of machine learning (ML) 

revolutionized protein structure prediction by 

introducing models capable of learning 

complex, non-linear relationships between 

protein sequences and structural features. 

Unlike traditional methods that relied heavily 

on hand- crafted rules or physical 

simulations, ML methods can learn directly 

from data, making them particularly suited 

for capturing subtle evolutionary and 

biophys- ical patterns [14, 13]. This section 

explores various ML-based approaches used 

in the different stages of protein structure 

prediction. 

Table 2: Comparison of Traditional Protein Structure Prediction Approaches 

Method Key Features Best Use Case Typical Accuracy 

(RMSD  or  TM-

score) 

Homology Modeling Uses known structure 

tem-plates with high 

sequence identity 

Sequence identity ¿ 

30% 

RMSD: 1–3 ̊ A or TM-

score ¿ 0.7 

Threading(Fold 

Recognition) 

Aligns sequence to 

known folds; works 

with low iden-tity 

Remote  homology 

detection 

RMSD: 3–5 ̊ A or TM-

score ≈ 0.5–0.7 

Ab Initio Modeling No template required; 

en-ergy minimization 

Small proteins (¡100 

residues) 

RMSD: 4–8 ̊ A or TM-

score ¡ 0.5 

Fragment Assembly Reconstructs protein 

from known fragments 

Medium-length pro-

teins with unknown fold 

RMSD: 2–6 ˚A 

Loop Modeling Predicts flexible loop 

re-gions 

Gaps in templates or 

active site mod-eling 

RMSD: 1.5–5 A˚ (for 

loops) 

Side-Chain  Model- ing Optimizes side-chain 

con-formations using 

rotamers 

Enzyme active sites or 

interface model-ing 

Side-chain RMSD: 1–

2 ˚A 
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Molecular Dynam- ics 

(MD 

Refines structure  using 

physical simulations 

Local refinement, 

conformational 

flexibility 

Improves by  0.5–2 ˚A 

Hybrid Methods (e.g., I-

TASSER) 

Combines  threading,  

abinitio, refinement 

Targets with weak 

templates 

RMSD: 2–4 ̊ A or TM-

score ≈ 0.6–0.8 

3.1   Secondary Structure Prediction 

One of the first successful ML applications in 

struc- tural bioinformatics was secondary 

structure predic- tion. Traditional statistical 

methods struggled with capturing long-range 

dependencies and required care- ful curation 

of feature sets [2]. ML-based techniques, 

particularly Support Vector Machines 

(SVMs), Ran- dom Forests, and ensemble 

learning models, brought significant 

performance improvements by integrating a 

wide variety of sequence-based and 

evolutionary features [19]. 

Methods such as PSIPRED and SPIDER3 

utilized position-specific scoring matrices 

(PSSMs), amino acid composition, 

hydrophobicity scales, and pre- dicted solvent 

accessibility to classify residues into helix, 

strand, or coil states [14, 17]. Ensemble 

methods combining several weak classifiers 

improved accuracy by reducing individual 

model biases. However, these models 

depended heavily on the quality of the input 

features and struggled with low-homology 

sequences. Later methods began to 

incorporate windowed fea- tures, where a 

local segment of the protein (typically 15–21 

residues) was used as the input for ML 

classifiers. Although effective, these 

window-based approaches limited the 

model’s ability to capture global dependen- 

cies, a problem eventually addressed by deep 

learning models such as convolutional and 

recurrent neural networks [13, 18]. 

3.2   Contact Map Prediction 

Contact map prediction is essential for 

inferring the 3D topology of a protein from its 

sequence.  It in- 

Table 3: Comparison of Machine Learning Approaches in Protein Structure Prediction 

(2019–2024) 

ML Technique Key Features Best Use Case Example  Paper  
(Cita- 
tion) 

Year 

Secondary Structure 
Prediction 

Uses evolutionary 
profiles, PSSMs, 
SVMs, ensemble 
models 

Predicting helix, 
strand, coil labels 

Singh  et  al.,  
”Advances 
in DNNs for protein 

struc- ture” [17] 

2020 

Contact Map 
Predic-tion 

Co-evolutionary  
fea-tures + 
SVMs or Na¨ıve 
Bayes; later 
CNNs 

Inferring residue- 
residue contacts 

Nguyen et al., 
”Comprehen- 
sive review DL PSP” 

[18] 

2020 
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Hidden Markov 
Models (HMMs) 

Models inser-
tions/deletions in 
MSAs using pro- 
file HMMs 

Homology detec- 
tion, fold 

recogni- tion 

Zhang and Xie,  ”DL 
in protein structure 
predic- tion” [13] 

2021 

Disorder Region 
Predic-tion 

Uses  SVMs, 
logis- tic regression 
with disorder-
related fea- 
tures 

Predicting  
flexible or 
unstructured pro- 
tein regions 

Alford et al., ”DL 
models 
for PSP” [16] 

2020 

Solvent 
Accessibility & 

Torsion Angle 

Predic-tion 

Regression with 
sliding windows 
and kNN/SVM 
models 

Predicting local 

residue exposure 

or phi/psi angles 

Zhou and Liu, ”Protein 
fold-ing and drug 
discovery” [15] 

2020 

Template-Free 
Embed-ding / 
Representation 
Learning 

Unsupervised  
learn-ing 
(e.g.autoen- coders, 
early trans-
formers) 

Feature 
generation 
From sequences 

without MSAs 

Li et al., ”Protein 
structure via DL” [19] 

2019 

volves predicting whether pairs of residues 

are in contact (typically within 8˚A). ML 

models initially used evolutionary couplings 

from MSAs and applied classifiers such as 

SVMs or Na¨ıve Bayes models to predict 

contact probabilities [16]. 

Later methods like MetaPSICOV and 

DeepCon- tact used richer feature sets, 

combining evolutionary profiles, predicted 

secondary structures, and coevolu- tion 

metrics [13]. The incorporation of 

convolutional neural networks allowed these 

methods to capture spatial dependencies 

across the sequence and improve long-range 

contact prediction [19]. 

These methods were further enhanced with 

the use of ensemble strategies, dropout-

based regularization, and multi-task learning 

frameworks, allowing for im- proved 

generalization [14]. The output of these 

models often feeds into downstream 

structure reconstruction algorithms that use 

contact maps to fold proteins using 

optimization-based methods [16]. 

3.3   Hidden Markov Models (HMMs) 

Hidden Markov Models (HMMs) 

revolutionized se- quence alignment and 

homology detection. In protein structure 

prediction, HMMs were primarily used for 

profile construction and fold recognition 

[13]. Tools like HMMER and HHpred built 

probabilistic models of MSAs, capturing 

insertions, deletions, and muta- tions [14]. 

HMMs enabled sensitive detection of remote 

ho- mologs, which are essential for accurate 

template se- lection in homology modeling 

[16]. These models also played a role in 

domain annotation, transmembrane region 

identification, and functional site prediction 

[17]. 

Despite their widespread use, HMMs were 

even- tually limited by their Markovian 

assumptions and inability to capture long-

range or hierarchical depen- dencies. As a 
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result, they have been increasingly 

augmented or replaced by deep learning-

based profile models [18]. 

3.4   Disorder Region Prediction 

Intrinsically disordered regions (IDRs) are 

segments of proteins that lack a fixed 3D 

structure under phys- iological conditions. 

Predicting IDRs is important for 

understanding protein flexibility, interaction 

sites, and regulatory functions. ML-based 

models, particularly logistic regression and 

SVMs, were among the first to predict 

disorder regions from primary sequence data 

[14]. 

Feature sets for IDR prediction typically 

include amino acid propensities, 

physicochemical properties, hydrophobicity, 

and evolutionary conservation. Tools like 

IUPred and DISOPRED utilized such 

features within machine learning 

frameworks to identify flexi- ble and 

unstructured regions [17]. 

Recent advances incorporate deep recurrent 

net- works and bidirectional LSTMs that 

model sequential dependencies across the 

full length of the protein, sig- nificantly 

improving prediction of both short and long 

disordered regions [13, 16]. These 

predictions also feed into structure 

refinement pipelines to prevent misfolding of 

flexible loops or termini [19]. 

3.5   Solvent Accessibility and Torsion 

Angle Prediction 

ML models have also been applied to predict 

residue- level properties such as solvent 

accessibility and tor- sion angles (ϕ, ψ), 

which provide fine-grained struc- tural 

information useful for tertiary structure 

predic- tion. Early models used regression 

techniques like SVM regression and k-

nearest neighbors (kNN) to predict 

continuous values for these properties [16]. 

Tools such as SPINE-X and Real-SPINE 

used neu- ral networks trained on sliding 

window features to predict residue exposure 

and backbone angles [18]. These predictions 

helped constrain conformational search 

spaces for tertiary structure prediction algo- 

rithms. 

Modern deep learning models for protein 

structure prediction employ fully connected 

and convolutional architectures trained end-

to-end to capture complex relationships 

between amino acid sequences and their 

three-dimensional structures. These models 

are often implemented within multi-task 

learning frameworks, predicting multiple 

residue-level attributes simultane- ously, 

such as secondary structure, solvent 

accessibil- ity, torsion angles, disorder 

regions, and contact maps [17, 13]. By 

sharing learned representations across tasks, 

multi-task models enhance generalization, 

par- ticularly for proteins with limited 

evolutionary infor- mation, and allow richer 

internal feature extraction from sequence 

data. 

Incorporating physicochemical constraints 

into modeling pipelines—such as solvent 

exposure, tor- sion angles, and residue-

residue distances—improves both model 

convergence and the physical plausibility of 

predicted structures [19]. Advanced 

architectures, including residual networks, 

graph neural networks, and transformer-

based attention models, capture long- range 

dependencies and structural context, which 

is crucial for predicting complex folds. 

Furthermore, many models leverage 

evolutionary information from multiple 



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION 

ONLINE ISSN 

3006-9726 

PRINT ISSN 

VOLUME . 4 ISSUE . 2 (2025) 3006-9718 

 

292 

https://journalofemergingtechnologyanddigitaltransformation.com Dilawar Khan* 

sequence alignments (MSAs) or embeddings 

from pretrained protein language models, 

providing additional sequence-based 

features that improve ac- curacy even for 

proteins without close homologs. To- gether, 

these strategies have significantly enhanced 

the precision of computational protein 

structure predic- tion, bringing it closer to 

experimentally determined structures. 

3.6  Template-Free Structural Embedding 

and Representation Learning 

In recent years, unsupervised and self-

supervised learn- ing methods have been 

employed to learn structural embeddings 

directly from large protein databases. These 

models, inspired by natural language 

process- ing (NLP), use architectures like 

Transformers and masked language 

modeling (MLM) to learn contextual 

representations of protein sequences [6, 5]. 

Models such as ESM (Evolutionary Scale 

Modeling), ProtBert, and TAPE have shown 

that pretraining on massive unlabeled 

datasets allows these models to capture 

structural and functional information implic- 

itly [6, 5, 19]. Fine-tuning these 

representations on downstream tasks like 

secondary structure prediction, contact 

prediction, or binding site prediction has led 

to state-of-the-art results in many cases [11]. 

These learned embeddings serve as 

generalized fea- ture extractors that 

outperform hand-crafted features across 

diverse prediction tasks. Moreover, such 

embed- dings have been used to cluster 

protein folds, discover new functional 

domains, and even predict effects of point 

mutations on structure and function [9, 10]. 

Table 4: Traditional vs ML-Based Approaches in Protein Structure Prediction 

Approach Limitations 

(Traditional) 

Advantages 

(ML-Based) 

Secondary Struc-ture Rule-based methods 

lack global context 

ML (SVMs, RNNs) 

capture sequence and 

evolutionary dependencies 

Contact Maps Co-evolution data is 

sparse 

CNNs combine features 

for bet-ter long-range 

prediction 

Homology /Threading Depend on high-identity 

templates 

ML infers structure via 

sequence embed- ings 

Disorder Re-gions Poor generaliza-tion 

from rules 

DL improves prediction 

for short and long disorder 

Solvent Accessi-bility Limited multi-output 

regres-sion 

Joint learning improves 

struc-tural accuracy 

HMMs / Profiles Markov assump-tion 

restricts context 

Transformers model full  

se-quence context 

Representation Learning Need MSAs or 

handcrafted fea-tures 

Self-supervised models 

general-ize broadly 
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4   Deep Learning-Based Approaches 

The advent of deep learning (DL) has 

revolutionized the field of protein structure 

prediction (PSP) by enabling models to 

autonomously learn complex, hi- erarchical 

mappings from protein sequences to their 

three-dimensional structures without the 

need for ex- tensive manual feature 

engineering. DL architectures are 

particularly well-suited to PSP because they 

can capture spatial, sequential, and long-

range depen- dencies within protein 

sequences, which are essential for 

understanding the intricacies of protein 

folding [14, 19]. This section discusses key 

DL approaches historically and currently 

applied to PSP, highlight- ing their 

architectures, strengths, limitations, and 

biological impact. 

4.1 Convolutional Neural Networks 

(CNNs) 

Convolutional Neural Networks (CNNs), 

originally developed for computer vision 

tasks, represent one of the earliest DL 

architectures adapted for protein structure 

prediction. CNNs excel at extracting hier- 

archical spatial features through 

convolutional filters, making them ideal for 

analyzing spatially organized data such as 

images. In PSP, protein features such as 

contact maps, residue pairwise distance 

matrices, or secondary structure elements 

can be naturally repre- sented as 2D matrices, 

allowing CNNs to learn spatial patterns 

effectively [18, 20]. 

Initial applications of CNNs to PSP often 

focused on secondary structure prediction, 

where 1D CNNs were employed to capture 

local sequential motifs within protein 

sequences. By sliding convolutional filters 

over one-dimensional amino acid sequences 

or their associated profiles (such as position-

specific scoring matrices), CNNs learned to 

identify characteristic se- quence patterns 

that correlate with helices, sheets, or coils. 

These approaches outperformed traditional 

machine learning methods reliant on 

handcrafted fea- tures due to the CNNs’ 

ability to learn discriminative 

representations directly from raw input data 

[15, 19]. Extending beyond one-dimensional 

data, 2D CNNs were leveraged to predict 

residue-residue contact maps, which 

represent the proximity between amino acid 

pairs in the folded protein. By treating the 

contact 

Table 5: Comparison of Deep Learning (DL) Approaches in Protein Structure Prediction 

(2019–2024) 

DL Model Key Features Best Use Case Representative Study Year 

Convolutional 
Neural Networks 
(CNNs) 

Detect local 
sequence motifs 
and spatial features 

Contact map and 
secondary 
structure 
prediction 

Singh et al., ”DNNs for 
Pro- tein Structure 
Prediction” [17] 

2020 

Recurrent
 Neur
al Networks 
(RNNs) 

Capture 
sequential 
dependencies via 
LSTM/GRU 

Residue 
embedding, 
secondary 
structure 

Zhang and Xie, ”DL in 
Pro- tein Structure 
Prediction” [13] 

2021 
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End-to-End 
Differen- tiable 
Models 

Predict 3D struc- 
ture directly from 
sequence or MSA 
using 
optimization 

Full protein 
folding without 
intermedi- ate 
steps 

AlQuraishi, ”End-to-End 
Dif- ferentiable 
Learning” [4] 

2019 

AlphaFold2 Evoformer block 
with pair and 
structure module 

High-accuracy 
full structure 
prediction from 
MSAs 

Jumper et al., 
”AlphaFold” [7] 

2021 

RoseTTAFold Three-track 
architec- ture 
(1D, 2D, 3D in- 
tegration) 

Structure pre- 
diction and 
protein–protein 
interaction 
model- ing 

Baek et
 al., 
”RoseTTAFold” [8] 

2021 

Graph Neural 
Net- works 
(GNNs) 

Residue/atom-level 
graph with 
message passing 

Side-chain mod- 
eling, structure 
refinement 

Alford et al., ”DL 
Models for PSP” [16] 

2020 

Transformers Long-range 
attention over 
sequences; pre- 
cursor to PLMs 

Structure 
modeling and 
embeddings 

Rives et al., ”Scaling 
Unsuper- vised Learning” 
[6] 

2021 

map as a grayscale image, CNNs applied 

spatial fil- ters to capture interaction patterns 

between distant residues. Notably, networks 

such as DeepCov and DNCON2 employed 

multi-layer 2D CNNs to predict contacts 

with improved accuracy, enabling better 

con- straints for downstream folding 

algorithms. These CNNs exploited local 

spatial correlations, translation invariance, 

and hierarchical feature learning to detect 

subtle residue interactions critical for folding 

[14, 18]. 

Subsequent advancements introduced 3D 

CNNs that operate on volumetric 

representations of protein structures or 

fragment assemblies. These 3D CNNs can 

directly model spatial coordinates and 

atomic environments, allowing end-to-end 

learning of atomic interactions and 

facilitating tasks like structure refine- ment 

or loop modeling. Despite their promise, 3D 

CNNs are computationally intensive and 

require large amounts of structural data for 

effective training [17]. However, CNNs face 

challenges in modeling very long-range 

dependencies intrinsic to protein folding, 

where residues far apart in sequence form 

close con- tacts in three-dimensional space. 

While deeper CNNs and multi-scale 

aggregation strategies partially miti- gate this 

by increasing receptive fields, they 

inherently rely on local neighborhood 

operations, limiting their ability to capture 

global context fully. This limitation 

motivated the exploration of alternative 

architectures such as recurrent neural 
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networks and, more recently, transformers 

[19]. 

Overall, CNNs laid the groundwork for DL 

in PSP by effectively modeling local and 

medium-range struc- tural patterns, 

improving prediction accuracy, and enabling 

end-to-end learning from sequence-derived 

features [14, 18]. 

4.2 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are 

designed to process sequential data by 

maintaining internal mem- ory states that 

capture information from previous inputs. 

Variants such as Long Short-Term Memory 

(LSTM) networks and Gated Recurrent 

Units (GRUs) were particularly popular for 

biological sequences, in- cluding proteins, 

because they can model dependen- cies over 

varying lengths and are capable of learning 

temporal or sequential relationships [19, 20]. 

In protein structure prediction, RNNs were 

ini- tially employed to model the sequential 

nature of amino acid chains, capturing long-

range dependencies where distant residues 

influence folding and structural motifs. 

Applications included predicting secondary 

structures, disorder regions, and generating 

sequence profiles or embeddings for 

downstream tasks. For ex- ample, LSTM-

based networks were used to generate 

context-aware residue representations by 

integrating information from both N-

terminal and C-terminal di- rections 

(bidirectional RNNs), improving predictions 

of local structural features [14, 18]. 

Moreover, RNNs were explored for early 

folding simulations and contact prediction by 

treating residue pairs as sequence elements 

and attempting to infer spa- tial relationships 

through sequential processing. Their ability 

to remember contextual sequence 

information proved advantageous over 

traditional feed-forward net- works, 

particularly for capturing patterns extending 

beyond local neighborhoods [15]. 

Despite these strengths, RNNs faced 

fundamental limitations in PSP. The 

vanishing and exploding gradi- ent 

problems, while partially alleviated by 

LSTM and GRU architectures, still hindered 

learning over very long protein sequences. 

Furthermore, their inherently sequential 

nature makes parallelization challenging, 

limiting scalability for large-scale datasets 

and long sequences [19]. 

Most critically, RNNs are better suited to 

linear sequential relationships and have 

difficulty learning complex, global 3D 

spatial relationships that are cen- tral to 

protein folding. While they excel at model-

ing sequential dependencies, they do not 

inherently encode the pairwise or higher-

order interactions be- tween residues needed 

for accurate folding predictions [19, 20]. 

Consequently, the role of RNNs in state-of-

the-art PSP has diminished with the advent 

of transformer architectures, which can 

simultaneously attend to all sequence 

positions and capture both local and global 

dependencies more efficiently. Nevertheless, 

RNNs contributed important foundational 

insights into se- quence modeling in PSP and 

remain useful in specific contexts, such as 

sequence embedding generation or disorder 

prediction [19]. 

4.3 End-to-End Differentiable Models 

The most transformative advancement in 

DL-based protein structure prediction (PSP) 

has been the de- velopment of fully end-to-

end differentiable mod- els. These models 
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learn to map raw amino acid sequences—and 

often multiple sequence alignments 

(MSAs)—directly to three-dimensional 

atomic coor- dinates. This is achieved by 

jointly optimizing all components of the 

prediction pipeline via backprop- agation. 

Unlike traditional multi-stage systems that 

rely on handcrafted intermediate features, 

these mod- els integrate the entire process, 

enabling them to learn hierarchical 

representations and structural constraints in a 

unified framework [4, 7]. 

4.4 AlphaFold and AlphaFold2 

The introduction of AlphaFold by DeepMind 

in 2018 marked a watershed moment for 

PSP. AlphaFold em- ployed deep 

convolutional neural networks to predict 

distance distributions between residue pairs, 

gener- ating a probabilistic representation of 

inter-residue distances. These distance maps 

were then converted into 3D coordinates 

using gradient-based optimiza- tion, 

enabling accurate structure reconstruction. 

Al- phaFold outperformed prior methods in 

the CASP13 competition, demonstrating the 

efficacy of DL-based distance predictions for 

structure modeling [3, 7]. 

Building on this success, AlphaFold2, 

released in 2020, introduced a radically 

novel architecture that integrated 

transformers with innovative modules to 

jointly model evolutionary, pairwise, and 

spatial in- formation. Key components of 

AlphaFold2 include: 

• MSA Attention: This mechanism 

extracts evo- lutionary relationships 

from multiple sequence alignments, 

allowing the model to identify con- 

served and co-evolving residues that 

inform fold- ing [7]. 

• Evoformer Blocks: Deep neural 

network mod- ules that iteratively refine 

sequence and pairwise representations 

through attention and communi- cation 

between sequence and residue pair 

features [7]. 

• End-to-End Structure Module: A 

differen- tiable module that directly 

predicts 3D atomic co- ordinates from 

refined features, enabling gradient- 

based training of the entire network [7]. 

AlphaFold2 abandoned the traditional two-

stage approach (predicting contacts or 

distances followed by folding) in favor of a 

unified end-to-end framework, enabling the 

model to learn effective folding strategies 

implicitly. This architecture achieved a 

median Global Distance Test (GDTTS) score 

of 92.4 at CASP14, rivaling the accuracy of 

experimental methods and revolutionizing 

the field [7, 10]. 

Importantly, AlphaFold2’s open-source 

release and associated databases have 

democratized access to high- quality 

structure predictions, catalyzing advances in 

biology, drug discovery, and protein 

engineering [7, 13]. 

4.5 RoseTTAFold 

RoseTTAFold, developed concurrently by 

the Baker Lab, introduced an alternative 

deep learning frame- work that employs a 

distinctive three-track network architecture. 

In contrast to AlphaFold2’s primarily 

sequential processing, RoseTTAFold 

processes infor- mation across three 

interconnected tracks in parallel: 

• 1D Sequence Track: Processing raw 

amino acid sequences. 
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• 2D Residue Pair Track: Capturing 

pairwise relationships and spatial 

constraints. 

• 3D Coordinate Track: Responsible for 

reason- ing about atomic spatial 

arrangements within the protein 

structure. 

Information flows bidirectionally between 

these tracks, allowing the model to integrate 

sequence, in- teraction, and geometry data in 

a tightly coupled manner. This architecture 

enables RoseTTAFold to reason jointly 

about sequence context, residue inter- 

actions, and three-dimensional structure, 

improving prediction accuracy and 

efficiency [8]. 

RoseTTAFold achieves performance 

comparable to AlphaFold2 but requires 

significantly fewer compu- tational 

resources, making it accessible for broader 

research applications. Moreover, its flexible 

architec- ture has been successfully applied 

to protein-protein interaction prediction and 

de novo protein design, demonstrating 

versatility beyond single-chain struc- ture 

prediction [8]. 

4.6 Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) have 

emerged as powerful tools for modeling the 

inherently graph- structured nature of 

proteins, where residues or atoms are nodes 

connected by edges representing chemical 

bonds or spatial proximity. Unlike CNNs and 

RNNs, which are restricted to grid-like or 

sequential data, GNNs naturally operate on 

irregular, non-Euclidean domains, making 

them well-suited to capture complex 

molecular interactions [14, 17]. 

GNNs utilize message-passing frameworks, 

wherein node features are iteratively updated 

by aggregating information from their 

neighbors. This enables the network to learn 

relational information and depen- dencies 

across the protein structure, capturing both 

local and global topology. In PSP, GNNs 

have been applied to: 

• Predict residue-residue contacts or 

distances by learning embeddings that 

reflect spatial and chemical contexts 

[14]. 

• Model side-chain packing and atomic 

interactions for structure refinement 

[17]. 

• Integrate sequence and structural data to 

accu- rately predict protein-protein 

interactions, im- proving the 

understanding of molecular mecha- 

nisms [17]. 

Graph convolutional networks (GCNs), 

graph atten- tion networks (GATs), and their 

variants have been explored, often combined 

with other DL modules for end-to-end PSP 

pipelines. For example, the GNN framework 

of GVP-GNN integrates geometric vector 

perceptrons to represent directional and 

scalar fea- tures of atoms, enhancing 3D 

structure understanding [17]. 

While promising, GNNs in PSP face 

challenges re- lated to scaling with protein 

size, requiring efficient graph construction 

and sampling techniques. Nonethe- less, 

GNNs complement transformer and CNN 

archi- tectures by providing flexible spatial 

relational rea- soning capabilities [14, 17]. 

4.7 Transformers and Attention 

Mechanisms 
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Transformers, introduced in natural language 

pro- cessing, utilize self-attention 

mechanisms to model pairwise dependencies 

across entire sequences simul- taneously. 

This contrasts with RNNs’ sequential pro- 

cessing and CNNs’ local receptive fields, 

enabling transformers to capture long-range 

and global inter- actions efficiently [10, 11]. 

In PSP, transformers are employed to: 

• Extract evolutionary and structural 

features from multiple sequence 

alignments (MSAs) by attend- ing to co-

evolving residues [7, 10]. 

• Model protein language representations 

that im- plicitly capture structural 

constraints from large protein sequence 

databases [11, 13]. 

• Serve as backbone architectures for end-

to-end PSP models such as AlphaFold2, 

which integrate transformer blocks (e.g., 

Evoformer) for refined feature extraction 

[7]. 

Recent developments have adapted 

transformers to handle protein-specific 

challenges, such as encod- ing three-

dimensional geometric information through 

geometric attention or integrating spatial 

positional encodings. Protein language 

models (PLMs) based on transformers, 

trained on millions of sequences, pro- vide 

embeddings that can be fine-tuned for PSP 

and other downstream tasks, improving 

generalization to novel proteins [11, 13]. 

Transformers’ scalability and 

parallelizability facili- tate training on 

massive protein datasets, contributing to 

continual improvements in PSP accuracy and 

effi- ciency. Their flexibility allows 

integration with other DL components like 

GNNs or CNNs, enabling hybrid models that 

leverage complementary strengths [7, 13]. 

 

5   Protein Language Models (PLMs) 

Protein Language Models (PLMs) represent 

a trans- formative application of natural 

language process- ing (NLP) methodologies 

to biological sequences. By treating protein 

sequences as “biological sentences,” PLMs 

exploit the power of large-scale self-

supervised learning to capture latent 

representations encoding structure, function, 

and evolutionary context directly from raw 

amino acid data. Unlike traditional mod- els 

that require handcrafted features or multiple 

se- quence alignments (MSAs), PLMs learn 

contextual embeddings from vast corpora of 

unlabeled sequences, enabling versatile 

applications across bioinformatics [5, 6]. 

5.1 ProtBERT 

ProtBERT is an adaptation of the 

Bidirectional En- coder Representations 

from Transformers (BERT) ar- chitecture, 

specialized for protein sequences [5]. Us- ing 

masked language modeling (MLM), 

ProtBERT is pretrained on millions of 

protein sequences from large databases such 

as UniProt, where the task in- volves 

predicting masked amino acids based on 

their bidirectional context within sequences. 

This enables the model to learn nuanced 

representations that en- code biochemical 

properties, evolutionary conserva- tion, and 

even structural motifs. 

The primary advantages of ProtBERT 

include: 
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• Transferability: ProtBERT embeddings 

can be fine-tuned for a diverse array of 

downstream tasks, 

 

 

Table 6: Comparison of Protein Language Models (PLMs) in Protein Structure Prediction 

(2019–2024) 

PLM Model Key Features Best Use Case Representative Study Year 

ESM-1b Transformer 

trained on 

UniRef50 with 

masked language 

modeling 

Learning embed- 

dings for struc- 

ture/function 

Rives et al., ”ESM-1b: 

Unsu- pervised Learning” 

[6] 

2021 

ProtBERT Based on BERT 

ar- chitecture 

trained on 

UniRef100 

Sequence-based 

pro- tein 

representation 

for multiple tasks 

Elnaggar et al.,

 ”Prot- Trans” 

[5] 

2021 

ESMFold End-to-end 

folding using pre-

trained ESM PLM 

Fast

 structur

e prediction 

without MSAs 

Lin et al., ”ESMFold” 

[9] 

2023 

ProteinBERT Combined MLM 

and GO 

annotation tasks 

during training 

Multi-task 

general- purpose 

protein rep- 

resentations 

Brandes et al.,

 ”Protei

n- BERT” [21] 

2022 

AlphaFold- 

Evoformer 

PLMs 

Integrates PLM 

with attention  

blocks in 

AlphaFold2-like 

setup 

Joint modeling 

of structure from 

sin- gle 

sequences 

Jumper et al., 

”AlphaFold with PLMs” 

[7] 

2021 

MSA-

Transformer 

Models co- 

evolutionary pat- 

terns from MSAs 

using axial 

attention 

Contact map 

predic- tion and 

sequence 

alignment 

encoding 

Rao et al., ”MSA 

Trans- former” [22] 

2021 

ESM-2 Scaled 

transformer PLM 

trained on large 

sequence corpora 

Embedding 

genera- tion, 

zero-shot func- 

tion prediction 

Meier et al., ”ESM-2” 

[23] 

2023 
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such as secondary structure prediction, 

subcellu- lar localization, post-translational 

modification site prediction, and protein-

protein interaction inference. This versatility 

stems from the rich contextual knowledge 

captured during pretrain- ing [5]. 

• Generalization Without MSAs: Unlike 

clas- sical methods that rely heavily on 

MSAs to infer evolutionary constraints, 

ProtBERT captures im- plicit 

evolutionary and structural signals from 

individual sequences. This capability 

allows it to generalize to novel or orphan 

sequences lacking homologs [6]. 

Empirical studies have demonstrated that 

Prot- BERT embeddings outperform 

handcrafted features and shallow models in 

tasks ranging from fold clas- sification to 

functional annotation [5]. Furthermore, 

ProtBERT accelerates protein analysis 

pipelines by removing the computationally 

intensive step of MSA construction. 

Despite these strengths, ProtBERT’s 

performance still depends on the quality and 

diversity of the train- ing dataset, and it 

requires substantial computational resources 

for pretraining and fine-tuning. Nonethe- 

less, it represents a major advance in 

leveraging transformer-based language 

models in structural bioin- formatics [5, 6]. 

5.2 ESMFold 

ESMFold, developed by Meta AI, marks a 

significant advance in PLM-driven protein 

structure prediction [9]. Unlike traditional 

approaches that depend on MSAs and 

homology information, ESMFold uses large- 

scale pretrained language models (notably 

ESM-2) to predict 3D atomic coordinates 

directly from primary sequences. This 

capability is transformative for ana- lyzing 

metagenomic or novel sequences with 

limited evolutionary context. 

Key characteristics of ESMFold include: 

• MSA-Free Prediction: By leveraging 

the rich internalized representations 

from the ESM lan- guage model, 

ESMFold bypasses the MSA step 

entirely, enabling rapid predictions on 

large-scale or difficult-to-align sequence 

datasets [9]. 

• Self-Supervised Pretraining: ESMFold 

bene- fits from self-supervised learning 

on massive pro- tein sequence databases, 

which imbues the model with implicit 

knowledge of structural and func- tional 

constraints [6]. 

• Speed and Scalability: ESMFold can 

predict protein structures orders of 

magnitude faster than traditional MSA-

based methods, facilitating high- 

throughput applications [12]. 

ESMFold’s success demonstrates that PLMs 

cap- ture sufficient structural cues from 

sequence alone, enabling accurate fold 

prediction without explicit evo- lutionary 

data. This opens new frontiers for structural 

genomics, synthetic biology, and protein 

engineering, particularly for novel or 

engineered proteins [9, 12]. 

5.3 Self-Supervised Learning in PLMs 

Self-supervised learning (SSL) strategies 

underpin the remarkable success of PLMs. 

SSL involves defining surrogate prediction 

tasks from unlabeled data, en- abling models 

to learn meaningful representations without 

explicit annotations. Common SSL methods 

in protein modeling include: 
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• Masked Token Prediction: Randomly 

mask- ing amino acids in sequences and 

training the model to predict the missing 

residues forces learn- ing of local and global 

context, akin to BERT in NLP [5]. 

• Auto-Regressive Modeling: 

Sequentially pre- dicting the next amino 

acid given previous residues, as in GPT-

style models, encodes sequen- tial 

dependencies and biochemical 

constraints [6]. 

• Contrastive Learning: Encouraging 

models to differentiate between similar 

and dissimilar se- quences or sequence 

segments facilitates learning of 

discriminative embeddings capturing 

evolution- ary or structural similarity [6]. 

These SSL methods enable PLMs to 

internalize the “grammar” of protein 

sequences—understanding which residues 

co-occur, motifs that indicate struc- tural 

elements, and evolutionary constraints—

without direct supervision. This 

fundamentally shifts protein modeling 

paradigms away from dependence on cu- 

rated labels or structural templates [5, 6]. 

5.4 Additional PLM Approaches 

Beyond ProtBERT and ESMFold, a growing 

ecosys- tem of PLMs explores novel 

architectures and training regimes to 

enhance protein sequence representation: 

ProteinBERT: ProteinBERT integrates 

protein- specific inductive biases with 

transformer architec- tures. It incorporates 

evolutionary information via pretraining on 

sequence alignments and leverages multi-

task objectives, improving its ability to pre- 

dict diverse properties such as binding 

affinity and enzymatic activity. 

ProteinBERT has demonstrated that task-

aware pretraining improves downstream 

pre- dictive performance [11]. 

TAPE (Tasks Assessing Protein 

Embeddings): TAPE is a benchmark suite 

and set of models de- signed to 

systematically evaluate PLMs across multi- 

ple protein prediction tasks. The models, 

including transformer, LSTM, and CNN-

based architectures, provide insights into the 

best architectures and train- ing strategies for 

protein modeling [17]. 

ESM-1b and ESM-2: The Evolutionary 

Scale Modeling (ESM) series further scaled 

protein lan- guage models with billions of 

parameters, leveraging training on over 250 

million sequences. ESM mod- els emphasize 

transformer scalability, self-attention 

mechanisms, and incorporate structural 

supervision to enhance embeddings for 

structure and function prediction [6, 9]. 

6  Reinforcement Learning and Itera- tive 

Refinement 

While supervised and self-supervised 

learning meth- ods have become the 

cornerstones of protein structure prediction 

(PSP), reinforcement learning (RL) offers a 

complementary and promising framework 

for tack- ling the inherently dynamic and 

sequential nature of protein folding and 

design. RL models the pro- tein folding 

process as a sequential decision-making 

problem, where an agent learns to explore 

the vast conformational landscape to 

optimize structural out- comes based on 

reward signals. This section explores key 

RL-based approaches, including folding 

simula- tion, de novo protein design, 

iterative refinement tech- niques, and 

emerging trends in combining RL with deep 

learning for PSP. 
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6.1 Folding Simulation Using 

Reinforcement Learning 

Protein folding is a highly complex, 

stochastic pro- cess in which a linear amino 

acid sequence transi- tions through 

numerous intermediate conformations to 

reach a stable native structure. Traditional 

physics- based simulations (e.g., molecular 

dynamics) are com- putationally expensive 

and often infeasible for large proteins. RL 

offers an alternative by formulating fold- ing 

as a Markov Decision Process (MDP), where 

an agent incrementally modifies the protein 

conformation in discrete steps. 

In this framework, the state space represents 

the current conformation, the actions 

correspond to local structural modifications 

(such as torsion angle rota- tions or fragment 

replacements), and the reward func- tion 

encodes how well the predicted structure 

aligns with biophysical criteria like energy 

minimization, compactness, or proximity to 

known native structures. Through trial and 

error, the RL agent learns a policy that 

maximizes cumulative rewards, effectively 

guid- ing folding pathways toward native-

like conformations [11]. 

Initial RL-based folding simulators 

demonstrated the potential to generate 

folding trajectories that cap- ture key 

intermediates and folding kinetics, offering 

mechanistic insights beyond static structural 

snap- shots. For example, Monte Carlo tree 

search com- bined with RL has been used to 

explore conforma- tional space efficiently. 

However, challenges remain due to the 

enormous state and action spaces, requiring 

function approximation with deep neural 

networks (deep RL) and sophisticated 

exploration strategies to avoid local minima. 

6.2 Reinforcement Learning for De 

Novo Pro- tein Design 

De novo protein design involves creating 

novel se- quences that fold into desired 

three-dimensional struc- tures with specific 

functional properties, such as ligand binding 

or enzymatic activity. Traditional design ap- 

proaches rely on energy-based heuristics and 

exhaus- tive search, which can be 

computationally prohibitive and limited in 

scope. 

RL offers a powerful paradigm by treating 

sequence generation and structure 

optimization as a sequential decision 

process, where the RL agent learns policies 

to select amino acids or motifs step-by-step, 

guided by reward functions encoding 

structural stability, fold- ing propensity, and 

functional constraints [11]. The agent’s goal 

is to generate sequences predicted to fold 

into stable, functional proteins, optimizing 

multiple competing objectives 

simultaneously. 

Recent studies utilize policy gradient 

methods, actor-critic algorithms, and deep 

Q-learning to op- timize protein sequences in 

silico. These RL agents can incorporate 

feedback from physics-based scoring 

functions, machine learning predictors of 

folding suc- cess, or experimental assay data, 

enabling iterative improvement. 

Reinforcement learning also facilitates the 

design of proteins with non-natural folds or 

func- tions by exploring novel sequence-

structure landscapes 

Table 7: Comparison of Deep Learning (DL) Approaches and Protein Language Models 

(PLMs) in Protein Structure Prediction 
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Aspect DL Approaches PLMs 

Input Type Require MSAs or structural 

templates (e.g., from databases) 

Use raw sequences directly; do 

not require MSAs or templates 

Feature Learning Supervised learning from 

labeled struc- ture/function 

datasets 

Self-supervised learning from 

massive unla- beled protein 

sequences 

Training Cost High due to MSA generation 

and model complexity 

High pretraining cost but 

inference is fast and scalable 

Inference Speed Slow, especially with MSA or 

template gen- eration 

Fast, suitable for large-scale 

protein screen- ing 

Generalization Poor generalization for orphan 

or no- homolog proteins 

Excellent generalization to unseen 

or novel proteins 

Modularity Architectures are often task-

specific 

Embeddings reusable across 

diverse tasks 

Transferability Limited transfer across tasks or 

domains 

High transferability to structure, 

function, and localization tasks 

Examples AlphaFold2, RoseTTAFold, 

CNNs, GNNs 

ProtBERT, ESMFold, ESM-

1b/2, Protein- BERT 

Use Cases High-accuracy folding

 (with 

MSAs/templates) 

Rapid analysis, metagenomics, 

functional annotation, screening 

inaccessible to classical methods. 

6.3 Iterative Refinement Strategies 

Inspired by Reinforcement Learning 

While models such as AlphaFold2 do not 

explicitly employ RL, their iterative 

refinement techniques share conceptual 

parallels with RL principles. AlphaFold2’s 

architecture employs repeated cycles of 

structure pre- diction and evaluation, 

progressively refining atomic coordinates to 

improve structural accuracy [16]. 

This iterative process can be viewed as 

analogous to a policy improvement loop, 

where each refinement step corresponds to 

taking an action in a state (current predicted 

structure), receiving feedback (loss/error 

signals), and updating the policy (neural 

network pa- rameters) to yield better 

predictions. Such feedback- driven iterative 

updates reduce errors incrementally, 

mimicking the trial-and-error learning of RL 

agents. Inspired by this, some recent methods 

explicitly integrate RL into refinement 

stages, allowing mod- els to explore 

conformational space more adaptively. For 

example, reinforcement learning algorithms 

have been proposed to optimize side-chain 

packing, back-bone adjustments, and 

flexible loop modeling, comple- menting 

gradient-based optimization with strategic 

exploration. 

6.4 Hybrid Models Combining Deep 

Learning and Reinforcement Learning 

A promising frontier in PSP is the integration 

of deep learning (DL) with reinforcement 

learning to harness the strengths of both 

paradigms. Deep RL models use neural 

networks to approximate complex policies 



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION 

ONLINE ISSN 

3006-9726 

PRINT ISSN 

VOLUME . 4 ISSUE . 2 (2025) 3006-9718 

 

304 

https://journalofemergingtechnologyanddigitaltransformation.com Dilawar Khan* 

and value functions over high-dimensional 

protein conformational spaces. 

Hybrid approaches often use pretrained DL 

models to provide rich feature embeddings or 

structural pri- ors, which guide RL agents in 

decision-making. For example, deep RL 

agents can operate in latent spaces learned by 

variational autoencoders (VAEs) or protein 

language models, dramatically reducing the 

search space complexity. 

In such models, the RL component can focus 

on optimizing specific objectives like 

maximizing binding affinity or minimizing 

free energy, while the DL com- ponents 

provide accurate state representations and 

Table 8: Comparison of Reinforcement Learning and Iterative Refinement Methods in 

Protein Structure Prediction (2019–2024) 

Method/Model Key Features Best Use Case Representative Study Year 

DRLComplex Deep 

reinforcement 

learning for 

docking 

Protein complex 

structure 

prediction via 

interface scoring 

Geng et al., 

”DRLComplex: RL for 

docking” [24] 

2021 

QDeep Quality 

assessment using 

Q-learning with 

atomic environ- 

ment features 

Selecting/refinin

g high-quality 

struc- tural 

models 

Uziela et al., ”QDeep:

 Q

- learning for QA” [25] 

2018 

RL-Refine Reinforcement 

learn- ing with 

iterative structure 

correction 

feedback 

Step-wise 

correction of 

predicted struc- 

tures 

Bai et al., ”RL-Refine” 

[26] 

2022 

RASP Integrates 

iterative 

refinement with 

Al- phaFold’s 

Evoformer 

High-accuracy 

structure 

prediction from 

few templates 

Wu et al., ”RASP: 

Refinement guided 

prediction” [27] 

2022 

ATOMRefine Graph-based 

refine- ment of 3D 

atomic co- 

ordinates 

Side-chain and 

back- bone atom 

adjust- ments 

Wu et al., 

”ATOMRefine” [28] 

2022 

FEAR Physics-informed 

en- ergy 

adjustment via 

refinement loop 

Combines 

physics priors 

with DL for 

final prediction 

Jing et al., ”FEAR: 

Force- based 

refinement” [29] 

2023 
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GNNRefine GNN-based 

iterative 

correction with 

atomic upervision 

Geometric 

refine- ment of 

coarse 

predictions 

Jin et al., ”GNNRefine” 

[30] 

2022 

reward estimations. This synergy accelerates 

conver- gence and improves the quality of 

predicted structures or designed sequences. 

Reinforcement learning models the protein 

fold- ing process as a sequential decision-

making problem, where an agent learns to 

explore the vast conforma- tional landscape. 

7   Challenges and Future Directions 

Despite significant progress in protein 

structure pre- diction (PSP), several key 

challenges remain across different 

methodological paradigms. Addressing these 

issues will be critical to advancing the field 

and broad- ening the scope of biological 

applications. 

 7.1 Challenges and Future Directions in 

Tra- ditional Computational Approaches 

Traditional methods based on physics and 

knowledge- based potentials face difficulties 

scaling to large, com- plex proteins due to 

computational costs and inaccu- racies in 

energy functions [1, 2, 16]. Future research 

must improve force fields and sampling 

algorithms to better capture the 

conformational landscape, espe- cially for 

membrane proteins and protein complexes. 

Integrating experimental constraints such as 

cryo-EM or NMR data into these 

frameworks could enhance accuracy and 

applicability [10]. 

Table 9: Comparison of PLMs With Reinforcement Learning and Iterative Refinement 

Approaches in Protein Structure Prediction 

Aspect Protein Language Models 

(PLMs) 

Reinforcement Learning & 

Iterative Refinement 

Folding Process 

Modeling 

Capture global structure 

statistically but do not simulate 

folding dynamics 

Simulate folding as a sequential 

decision process with intermediate 

state transi-tions 

Adaptability  and  

Feed-back 

Fixed embeddings after 

pretraining; no feedback during 

inference 

Learns through trial-and-error with 

struc-tural rewards for adaptive 

improvement 

Granular Structural 

Con- 

trol 

Limited control over atomic details 

(e.g., torsion angles or side-chain 

packing) 

Enables fine-tuned control of 

specific structural properties and 

constraints 

Exploration  and  

Design 

Space Coverage 

Generalize from training data but 

strug-gle with novel or de novo 

sequences 

Actively explore novel folds and 

design solutions through reward-

driven search 
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Multi-Objective Opti-

mization 

Single-task  focused  unless  fine-

tuned;lacks native multi-objective 

handling 

Naturally supports optimization 

over mul-tiple objectives via 

reward shaping 

Refinement Capability One-shot structure generation 

without iterative corrections 

Iteratively refines predictions to 

improve structural quality and 

convergence 

When to Use Fast, accurate predictions for 

known or homologous sequences 

without MSAs 

Best for design tasks, folding 

simulation, or structure refinement 

where feedback is 

critical 

7.2 Challenges and Future Directions in 

Ma- chine Learning-Based Approaches 

Machine learning models have improved 

PSP accuracy but still require extensive 

feature engineering and of- ten rely on 

handcrafted representations [14, 13]. They 

generally struggle to capture long-range 

interactions and 3D structural context. 

Future efforts should fo- cus on hybrid 

models that combine machine learning with 

physical principles to improve 

interpretability and generalizability. 

Additionally, expanding training datasets 

with diverse protein families and incorporat- 

ing evolutionary information more 

effectively remain important challenges [18]. 

7.3 Challenges and Future Directions in 

Deep Learning-Based Approaches 

Deep learning models such as CNNs, RNNs, 

and trans- formers have revolutionized PSP 

by learning rich rep- resentations from 

sequences and multiple sequence alignments 

(MSAs) [3, 7, 8, 14]. However, challenges 

include: 

• Modeling dynamics and flexibility: 

Most DL models predict static 

structures, but proteins are dynamic 

molecules whose functions depend on 

conformational changes. 

• Dependence on MSAs: Many top-

performing models require high-quality 

MSAs, which are unavailable for orphan 

or metagenomic sequences. 

• Computational cost: Large DL models 

de- mand substantial computational 

resources and training data. 

Future research should aim to develop end-

to-end frameworks that incorporate protein 

dynamics and environmental context, 

improve efficiency through model 

compression and transfer learning, and 

reduce reliance on MSAs using single-

sequence-based meth- ods [9, 12, 13]. 

7.4 Challenges and Future Directions in 

Pro- tein Language Models (PLMs) 

PLMs capture implicit biological grammar 

from raw sequences without explicit 

supervision, but several issues remain [5, 6, 

9]: 

• Interpretability: Understanding how 

PLMs en- code structural and functional 

features remains limited, complicating 

biological insight extrac- tion. 
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• Integration with experimental data: 

Com- bining PLM embeddings with 

experimental struc- tural data could 

improve prediction fidelity. 

• Scaling and generalization: Although 

trained on millions of sequences, PLMs 

still face chal- lenges in generalizing to 

rare or novel protein folds. 

Future directions include developing 

multimodal models that integrate sequence, 

structure, and func- tional annotations, 

improving interpretability via at- tention 

visualization and probing, and extending 

PLMs to predict protein interactions and 

dynamics [5, 9, 19]. 

7.5 Challenges and Future Directions in 

Re- inforcement Learning and Iterative 

Re- finement 

RL approaches provide a natural framework 

for simu- lating folding pathways and 

designing novel proteins but are still in early 

stages [11, 15]. Key challenges include: 

• High-dimensional action space: The 

confor- mational space of proteins is 

enormous, making RL exploration 

computationally demanding. 

• Reward design: Defining meaningful 

and ef- ficient reward functions that 

capture stability, functionality, and 

biophysical constraints remains difficult. 

• Integration with other methods: 

Combining RL with DL-based static 

prediction models to enable dynamic 

folding simulations and design pipelines 

is an open challenge. 

Future work should focus on improving 

sample effi- ciency through better 

exploration strategies and hier- archical RL, 

incorporating physics-based constraints into 

the reward framework, and developing 

hybrid systems that integrate iterative 

refinement with RL- inspired optimization 

for enhanced accuracy and de- sign 

capability [7, 11]. 

7.6 Cross-Cutting Future Directions 

Across all approaches, several broader 

challenges and opportunities stand out: 

• Model interpretability: Enhancing 

trans- parency and explainability will be 

critical for biological validation and 

acceptance. 

• Handling data scarcity: Developing 

methods robust to limited or noisy data, 

especially for underrepresented protein 

families. 

• Multiscale modeling: Bridging atomic-

level detail with cellular and system-level 

understand- ing remains an open frontier. 

• Integration with experimental 

workflows: Close synergy with high-

throughput experimental techniques will 

accelerate validation and discov- ery. 

The confluence of advances in 

computational power, algorithms, and data 

availability promises a future where protein 

structure prediction not only reaches atomic 

accuracy routinely but also captures 

functional dynamics and informs protein 

engineering and drug discovery. 

8  Conclusion 

Protein structure prediction has witnessed a 

paradigm shift, evolving from early heuristic 

and physics-based models [1, 2] to advanced 

machine learning and AI- driven approaches 

that achieve unprecedented accu- racy [3, 7]. 

The rise of deep learning techniques, in- 

cluding convolutional neural networks, 

transformer ar- chitectures, and protein 
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language models, has dramat- ically 

improved the ability to infer complex 

sequence- structure relationships [5, 6, 9]. 

Reinforcement learn- ing (RL), while still 

emerging in this field, offers a powerful 

framework to model the dynamic, sequen- 

tial nature of folding and enable innovative 

protein design strategies [11, 15]. 

Furthermore, iterative re- finement 

techniques exemplified by AlphaFold2 illus- 

trate how repeated prediction-evaluation 

cycles can substantially enhance structural 

accuracy, bridging supervised learning with 

RL-inspired optimization [7, 8]. 

Despite these advances, several challenges 

persist. Modeling protein dynamics and 

folding pathways at atomic resolution 

remains difficult due to the vast 

conformational landscape and computational 

costs [16]. Predicting structures of 

membrane proteins and multi-protein 

complexes poses additional complex- ity, 

often hindered by limited experimental data 

[10]. Accurately capturing protein-ligand 

interactions and conformational flexibility is 

crucial for understanding biological function 

and drug design but remains an open 

challenge [12]. 

The future of protein structure prediction will 

likely involve integrative approaches that 

combine physics-based simulations, 

machine learning, and high- throughput 

experimental data [14, 19]. Leveraging re- 

inforcement learning for dynamic folding 

simulations and de novo protein design, 

alongside deep learn- ing for static structure 

prediction, holds promise to unlock new 

frontiers in synthetic biology and ther- 

apeutics [4, 11, 15]. The continued 

development of interpretable, scalable, and 

data-efficient models will be essential to 

translate computational advances into 

biological insights and practical applications. 

In summary, the convergence of diverse 

computa- tional methodologies and growing 

biological datasets heralds a transformative 

era in understanding and engineering 

proteins, with broad implications across 

medicine, biotechnology, and fundamental 

biology. 
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